[논문 구현] PyTorch로 WRN, Wide residual Network(2016) 구현하고 학습하기
PyTorch로 WRN(Wide Residual Network)를 구현하고 학습까지 해보겠습니다. 작업 환경은 google colab에서 진행했습니다.
논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다.
전체 코드는 여기에서 확인하실 수 있습니다.
1. 데이터셋 불러오기
데이터셋은 torchvision 패키지에서 제공하는 STL10 dataset을 이용하겠습니다. STL10 dataset은 10개의 label을 갖으며 train dataset 5000개, test dataset 8000개로 구성됩니다.
우선 Google colab에 mount를 합니다.
from google.colab import drive
drive.mount('wrn')
필요한 라이브러리를 import 합니다.
# import package
# model
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
from torch import optim
# dataset and transformation
from torchvision import datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import os
# display images
from torchvision import utils
import matplotlib.pyplot as plt
%matplotlib inline
# utils
import numpy as np
from torchsummary import summary
import time
import copy
dataset을 불러옵니다.
# specify path to data
path2data = '/content/wrn/MyDrive/data'
# if not exists the path, make the directory
if not os.path.exists(path2data):
os.mkdir(path2data)
# load dataset
train_ds = datasets.STL10(path2data, split='train', download=True, transform=transforms.ToTensor())
val_ds = datasets.STL10(path2data, split='test', download=True, transform=transforms.ToTensor())
print(len(train_ds))
print(len(val_ds))
transformation 객체를 정의하고, dataset에 적용합니다.
# define transformation
transformation = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(64)
])
# apply transformation to dataset
train_ds.transform = transformation
val_ds.transform = transformation
dataloader를 생성합니다.
# make dataloade
train_dl = DataLoader(train_ds, batch_size=32, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=32, shuffle=True)
sample image를 확인하겠습니다.
# check sample images
def show(img, y=None):
npimg = img.numpy()
npimg_tr = np.transpose(npimg, (1, 2, 0))
plt.imshow(npimg_tr)
if y is not None:
plt.title('labels:' + str(y))
np.random.seed(5)
torch.manual_seed(0)
grid_size=4
rnd_ind = np.random.randint(0, len(train_ds), grid_size)
x_grid = [train_ds[i][0] for i in rnd_ind]
y_grid = [val_ds[i][1] for i in rnd_ind]
x_grid = utils.make_grid(x_grid, nrow=grid_size, padding=2)
plt.figure(figsize=(10,10))
show(x_grid, y_grid)
잘 불러와졌네요ㅎㅎ
2. 모델 구축하기
이제 WRN을 구축하겠습니다. 코드는 https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/wideresidual.py를 참고해서 만들었습니다.
WRN에서 사용하는 residual unit과 전체 구조입니다.
class WiderBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super().__init__()
self.residual = nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.ReLU(),
nn.Conv2d(in_channels, out_channels, 3, stride=stride, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(),
nn.Dropout(),
nn.Conv2d(out_channels, out_channels, 3, stride=1, padding=1)
)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Conv2d(in_channels, out_channels, 1, stride=stride, padding=0)
def forward(self, x):
x_shortcut = self.shortcut(x)
x_res = self.residual(x)
return x_shortcut + x_res
class WRN(nn.Module):
def __init__(self, depth=40, k=10, num_classes=10, init_weights=True):
super().__init__()
N = int((depth-4)/6)
self.in_channels = 16
self.conv1 = nn.Conv2d(3, 16, 3, stride=1, padding=1)
self.conv2 = self._make_layer(16*k, N, 1)
self.conv3 = self._make_layer(32*k, N, 2)
self.conv4 = self._make_layer(64*k, N, 2)
self.bn = nn.BatchNorm2d(64*k)
self.relu = nn.ReLU()
self.avg_pool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(64*k, num_classes)
# weight initialization
if init_weights:
self._weights_initialize()
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.bn(x)
x = self.relu(x)
x = self.avg_pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def _make_layer(self, out_channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks-1)
layers = []
for stride in strides:
layers.append(WiderBlock(self.in_channels, out_channels, stride))
self.in_channels = out_channels
return nn.Sequential(*layers)
# weight initialization
def _weights_initialize(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def WRN_40_10():
return WRN(40, 10)
모델이 잘 만들어졌는지 확인하겠습니다.
# check model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
x = torch.randn(3, 3, 64, 64).to(device)
model = WRN_40_10().to(device)
output = model(x)
print(output.size())
잘 만들어졌네요!
모델 summary를 출력합니다.
# check model summary
summary(model, (3, 64, 64), device=device.type)
3. 학습하기
학습에 필요한 함수들을 정의하고, 학습을 진행하겠습니다.
# define loss function, optimizer, lr_scheduler
loss_func = nn.CrossEntropyLoss(reduction='sum')
opt = optim.Adam(model.parameters(), lr=0.01)
from torch.optim.lr_scheduler import ReduceLROnPlateau
lr_scheduler = ReduceLROnPlateau(opt, mode='min', factor=0.1, patience=5)
# get current lr
def get_lr(opt):
for param_group in opt.param_groups:
return param_group['lr']
# calculate the metric per mini-batch
def metric_batch(output, target):
pred = output.argmax(1, keepdim=True)
corrects = pred.eq(target.view_as(pred)).sum().item()
return corrects
# calculate the loss per mini-batch
def loss_batch(loss_func, output, target, opt=None):
loss_b = loss_func(output, target)
metric_b = metric_batch(output, target)
if opt is not None:
opt.zero_grad()
loss_b.backward()
opt.step()
return loss_b.item(), metric_b
# calculate the loss per epochs
def loss_epoch(model, loss_func, dataset_dl, sanity_check, opt=None):
running_loss = 0.0
running_metric = 0.0
len_data = len(dataset_dl.dataset)
for xb, yb in dataset_dl:
xb = xb.to(device)
yb = yb.to(device)
output = model(xb)
loss_b, metric_b = loss_batch(loss_func, output, yb, opt)
running_loss += loss_b
if metric_b is not None:
running_metric += metric_b
if sanity_check is True:
break
loss = running_loss / len_data
metric = running_metric / len_data
return loss, metric
# function to start training
def train_val(model, params):
num_epochs=params['num_epochs']
loss_func=params['loss_func']
opt=params['optimizer']
train_dl=params['train_dl']
val_dl=params['val_dl']
sanity_check=params['sanity_check']
lr_scheduler=params['lr_scheduler']
path2weights=params['path2weights']
loss_history={'train': [], 'val': []}
metric_history={'train': [], 'val': []}
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = float('inf')
start_time = time.time()
for epoch in range(num_epochs):
current_lr = get_lr(opt)
print('Epoch {}/{}, current lr={}'.format(epoch, num_epochs-1, current_lr))
model.train()
train_loss, train_metric = loss_epoch(model, loss_func, train_dl, sanity_check, opt)
loss_history['train'].append(train_loss)
metric_history['train'].append(train_metric)
model.eval()
with torch.no_grad():
val_loss, val_metric = loss_epoch(model, loss_func, val_dl, sanity_check)
loss_history['val'].append(val_loss)
metric_history['val'].append(val_metric)
if val_loss < best_loss:
best_loss = val_loss
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(model.state_dict(), path2weights)
print('Copied best model weights!')
lr_scheduler.step(val_loss)
if current_lr != get_lr(opt):
print('Loading best model weights!')
model.load_state_dict(best_model_wts)
print('train loss: %.6f, val loss: %.6f, accuracy: %.2f, time: %.4f min' %(train_loss, val_loss, 100*val_metric, (time.time()-start_time)/60))
print('-'*10)
model.load_state_dict(best_model_wts)
return model, loss_history, metric_history
학습에 필요한 파라미터를 설정합니다.
# define the training parameters
params_train = {
'num_epochs':30,
'optimizer':opt,
'loss_func':loss_func,
'train_dl':train_dl,
'val_dl':val_dl,
'sanity_check':False,
'lr_scheduler':lr_scheduler,
'path2weights':'./models/weights.pt',
}
# check the directory to save weights.pt
def createFolder(directory):
try:
if not os.path.exists(directory):
os.makedirs(directory)
except OSerror:
print('Error')
createFolder('./models')
학습을 시작합니다. 저는 30epoch로 설정했습니다.
model, loss_hist, metric_hist = train_val(model, params_train)
loss-accuracy progress를 확인하겠습니다.
# Train-Validation progress
num_epochs = params_train['num_epochs']
# plot loss progress
plt.title('Train-Val Loss')
plt.plot(range(1, num_epochs+1), loss_hist['train'], label='train')
plt.plot(range(1, num_epochs+1), loss_hist['val'], label='val')
plt.ylabel('Loss')
plt.xlabel('Training Epochs')
plt.legend()
plt.show()
# plot accuracy progress
plt.title('Train-Val Accuracy')
plt.plot(range(1, num_epochs+1), metric_hist['train'], label='train')
plt.plot(range(1, num_epochs+1), metric_hist['val'], label='val')
plt.ylabel('Accuracy')
plt.xlabel('Training Epochs')
plt.legend()
plt.show()
감사합니다.