반응형

가중치 2

[딥러닝] 합성곱 신경망(CNN) - 3차원 데이터의 합성곱 연산 - 가중치와 편향

사이토고키의 을 공부하고 정리해보았습니다. [딥러닝] 합성곱 신경망(CNN) - 합성곱 연산에서의 패딩과 스트라이드 사이토고키의 을 공부하고 정리해보았습니다. 을 공부하고 정리해보았습니다. 을 공부하고 정리해보았습니다. 을 공부하고 정리해보았습니다. 합성곱 신경망 - C deep-learning-study.tistory.com 이전 포스팅에서 합성곱 연산에서의 패딩과 스트라이드 기법을 공부했습니다. 이번에는 3차원 데이터의 합성곱 연산에 대해 공부하겠습니다. 3차원 데이터의 합성곱 연산 지금까지 2차원 형상을 다루는 합성곱 연산을 살펴봤습니다. 그러나 이미지만 해도 세로, 가로, 채널의 3차원 데이터입니다. 이번에는 채널까지 고려한 3차원 데이터를 다루는 합성곱 연산을 살펴보겠습니다. 3차원 데이터의 합..

[딥러닝] 1. 가중치의 초깃값 - 초깃값을 0으로 하면?

사이토고키의 을 공부하고 정리해보았습니다. 가중치의 초깃값 신경망 학습에서 특히 중요한 것이 가중치의 초깃값입니다. 가중치의 초깃값을 무엇으로 설정하느냐가 신경망 학습의 성패가 가르는 일이 자주 있습니다. 권장 초깃값에 대해 알아보고 실험을 통해 실제로 신경망 학습이 신속하게 이뤄지는 모습을 확인하겠습니다. 초깃값을 0으로 하면? 오버피팅을 억제해 범용 성능을 높이는 테크닉인 가중치 감소(weight decay) 기법을 알아보겠습니다. 가중치 감소는 간단히 말하면 가중치 매개변수의 값이 작아지도록 학습하는 방법입니다. 가중치 값을 작게 하여 오버피팅이 일어나지 않게 하는 것입니다. 가중치를 작게 만들고 싶으면 초깃값도 최대한 작은 값에서 시작해야 합니다. 그렇다면 가중치의 초깃값을 모두 0으로 설정하면 ..

반응형