반응형

리뷰 6

[논문 읽기] Inception-v4(2016) 리뷰, Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

이번에 소개할 논문은 2017년에 나온 Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 입니다. 저자는 Szegedy 입니다. Inception-v1(GoogLeNet), Inception-v2, v3은 이미지 분류 대회에서 항상 좋은 성적을 거둬왔습니다. Inception 계열의 특징은 적은 파라미터수를 갖지만 모델이 다소 복잡합니다. 이 복잡성 때문에 VGGnet이 GoogLeNet보다 흔하게 사용되었죠. inceptio-v1에서 개선된 v4에는 어떤 점이 변화되었는지 살펴보겠습니다. 이 논문에서 Inception-v4와 Inception-ResNet을 소개합니다. Inception-v4는 Incepti..

[논문 읽기] Feature Pyramid Net, FPN(2017) 리뷰

FPN, Feature Pyramid Networks for Object Detection 논문을 읽어보고, 내용을 정리한 포스팅입니다. Abstract 스케일 불변성(scale-invariance)를 얻기 위해 Feature Pyramids를 사용하는 것은 필수적입니다. 하지만 Feature Pyramids는 많은 연산량과 메모리가 필요하여, detection 속도가 느려지는 문제점이 있습니다. 이를 개선하기 위해 제안된 방법이 FPN입니다. FPN을 Faster R-CNN에 사용하여 최고 성능을 얻었습니다. Different Architectures for Detection object detection 방법은 image를 CNN에 전달시켜 생성된 feature map을 이용합니다. 이미지의 해상도가..

[논문 읽기] ResNet(2015) 리뷰

이번에 읽어볼 논문은 ResNet, 'Deep Residual Learning for Image Recognition' 입니다. ResNet은 residual repesentation 함수를 학습함으로써 신경망이 152 layer까지 가질 수 있습니다. ResNet은 이전 layer의 입력을 다음 layer로 전달하기 위해 skip connection(또는 shorcut connection)을 사용합니다. 이 skip connection은 깊은 신경망이 가능하게 하고 ResNet은 ILSVRC 2015 우승을 했습니다. Plain Network의 문제점 Plain network는 skip/shortcut connection을 사용하지 않은 일반적인 CNN(AlexNet, VGGNet) 신경망을 의미합니다..

[논문 리뷰] YOLO v1 (2016) 리뷰

이번에 리뷰할 논문은 'You Only Look Once: Unified, Real-Time Object Detection' 입니다. Deep Learning을 이용한 object detection 접근법은 크게 두 가지로 나눠볼 수 있습니다. Object Detection의 두 가지 접근법 1. 2-stage Detector 2-stage Detector은 특징 추출과 객체 분류, 두 가지 과정을 거쳐 객체를 탐지합니다. 특징 추출과 객체 분류라는 두 가지 문제를 순차적으로 해결하는 것입니다. 역할을 분담하여 문제를 처리하므로 정확도는 높지만, 속도가 느리다는 단점이 있습니다. 2-stage Detector에는 대표적으로 Fast R-CNN, OverFeat, DPM 등이 있습니다. 논문에서 2-sta..

[논문 리뷰] LeNet-5 (1998), 파이토치로 구현하기

가장 기본적인 CNN 구조인 LeNet-5 논문을 읽어보고 파이토치로 직접 구현해보면서 CNN에 대한 이해도를 높여보겠습니다. LeNet-5은 1998년 Yann LeCun의 논문 'Gradient-Based Learning Applied to Document Recognition' 에 담겨있는 CNN 신경망의 구조를 의미합니다. 위 논문은 46page에 달하는 논문으로 문자 인식 업무에 CNN이 효과적인 이유에 대해 기술되어 있어, 읽어본다면 CNN에 대한 이해도를 높일 수 있을 것이라고 생각 합니다. 이제, 논문을 요약해보고 PyTorch로 구현해보겠습니다. 1. LeNet-5 등장 배경 LeNet-5은 Yann LeCun이 손으로 적힌 우편 번호를 전통적인 방법보다 효율적으로 확인하기 위해 고안된 ..

반응형