부스팅(Boosting) 결정 트리의 예측을 향상시키는 또다른 방법은 부스팅(boosting) 입니다. 부트스트랩을 사용하여 다수의 training data 부분 집합을 생성하여 각 부분 집합에 대하여 각 트리를 적합하고 결과값을 평균하는 것이 배깅이었습니다. 각 트리는 부트스트랩 데이터셋을 기반으로 구축되고 트리는 서로 독립적입니다. 부스팅은 트리들이 순차적으로 만들어지는 것을 제외하고 이와 비슷한 방법으로 작동합니다. 각 트리는 이전에 만들어진 트리로부터 정보를 사용하여 만들어집니다. 부스팅은 부트스트랩 샘플링을 사용하지 않습니다. 대신에 각 트리를 original dtaset의 수정된 버전에 적합합니다. 우선 회귀 트리를 고려하겠습니다. bagging과 같이 부스팅은 많은 수의 결정 트리를 결합합니..