서포트 벡터 분류기(Support Vector Classifiers) 위 그림 같은 경우에 training observation은 분리 초평면(separating hyperplane)에 의해 분류되지 않습니다. 이처럼 두 class에 속하는 관측치(observation)들이 항상 초평면에 의해 분류되는 것은 아닙니다. 또한 관측치가 하나 추가되면 위 그림처럼 초평면이 급격하게 변화될 수 있습니다. 마진이 급격하게 감소했는데 마진은 observation에 할당된 class의 확신을 의미하므로 문제가 발생할 수 있습니다. 이처럼 분리 초평면에 기반한 분류기는 하나의 개별 관측치에 민감하게 반응할 수 있습니다. 또한 과적합을 유발할 수 있습니다. 이 경우에 관측값들을 완벽하게 두 클래스로 분리하지 않는 초평면..