반응형

하이퍼파라미터 3

[딥러닝] 하이퍼파라미터를 최적화하는 방법과 구현하기

사이토고키의 을 공부하고 정리해보았습니다. [딥러닝] 검증 데이터 - 하이퍼파라미터의 성능을 평가 사이토고키의 을 공부하고 정리해보았습니다. 적절한 하이퍼파라미터 값 찾기 신경망에는 하이퍼파라미터가 다수 등장합니다. 여기서 말하는 하이퍼파라미터� deep-learning-study.tistory.com 검증 데이터로 하이퍼파라미터의 성능을 평가한다는 것을 배웠습니다. 이번에는 하이퍼파라미터 최적화를 알아보겠습니다. 하이퍼파라미터 최적화 하이퍼파라미터를 최적화할 때의 핵심은 하이퍼파라미터의 '최적 값'이 존재하는 범위를 조금씩 줄여간다는 것입니다. 범위를 조금씩 줄이려면 우선 대략적인 범위를 설정하고 그 범위에서 무작위로 하이퍼파라미터 값을 골라낸 후, 그 값으로 정확도를 평가합니다. 정확도를 잘 살피면서..

[딥러닝] 검증 데이터 - 하이퍼파라미터의 성능을 평가

사이토고키의 을 공부하고 정리해보았습니다. 적절한 하이퍼파라미터 값 찾기 신경망에는 하이퍼파라미터가 다수 등장합니다. 여기서 말하는 하이퍼파라미터는, 예를 들어 각 층의 뉴런 수, 배치 크기, 매개변수 갱신 시의 학습률과 가중치 감소 등입니다. 이러한 하이퍼파라미터의 값을 적절히 설정하지 않으면 모델의 성능이 크게 떨어지기도 합니다. 하이퍼파라미터의 값은 매우 중요하지만 그 값을 결정하기까지는 일반적으로 많은 시행착오를 겪습니다. 하이퍼파라미터의 값을 최대한 효율적으로 탐색하는 방법을 알아보겠습니다. 검증 데이터 - Validation data 지금까지는 데이터셋을 훈련 데이터와 시험 데이터라는 두 가지로 분리해 이용했습니다. 훈련 데이터로는 학습을 하고, 시험 데이터로는 범용 성능을 평가 했습니다. 그..

[딥러닝] 매개변수 갱신 - Adam, 어느 갱신 방법을 이용할 것인가?

사이토고키의 을 공부하고 정리하였습니다. 매개변수 갱신 - Adam 모멘텀은 공이 그릇 바닥을 구르는 듯한 움직임을 보였습니다. AdamGrad는 매개벼수의 원소마다 적응적으로 갱신 정도를 조정했습니다. 두 기법을 융합한 기법이 바로 Adam입니다. 위 두 방법의 이점을 조합했으므로 매개변수 공간을 효율적으로 탐색해줄 것이라고 기대할 수 있습니다. 하이퍼파라미터의 '편향 보정'이 진행된다는 점도 Adam의 특징입니다. Adam에 의한 최적화 갱신 경로를 확인해보겠습니다. Adam 갱신 과정도 모멘텀과 비슷한 패턴으로 움직입니다. 이는 학습의 갱신 강도를 적응적으로 조정해서 얻는 혜택입니다. Adam은 하이퍼파라미터를 3개 설정합니다. 하나는 지금까지의 학습률, 나머지 두 개는 일차 모멘텀용 계수와 이차 ..

반응형