안녕하세요, 오늘 읽은 논문은 Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding 입니다. 해당 논문에서 제안하는 방법으로 성능저하 없이 AlexNet의 메모리를 240MB -> 6.9MB로 35x 감소시킵니다. VGG-16의 경우에는 552MB -> 11.3MB로 49x 감소시킵니다. 논문에서 제안하는 Deep Compression은 3가지 단계로 구성됩니다. 1) 많은 정보를 포함하는 connection만을 유지한채로 쓸모없는 connection을 제거하여 model을 pruning 합니다. 2) 가중치들을 quantize 합니다. 비슷한 값을 가진 weight들을 ..