이번에 읽어볼 논문은 Rethinking the Inception Architecture for Computer Vision 입니다. 본 논문에서는 Inception-v2와 Inception-v3을 소개합니다. 일반적으로, 모델 크기를 증가시키면 정확도와 연산량이 증가합니다. 예를들어, ResNet은 skip connection을 활용해서 모델의 깊이를 증가시켜 성능을 끌어올렸습니다. 하지만 깊어진 만큼 연산량이 많아져 학습하는데에 시간이 오래 걸립니다. 이처럼 모델 크기를 증가시키면 연산량이 증가하게 되는데, 이는 mobile이나 제한된 메모리에서 활용해야 할때, 단점으로 작용합니다. 저자는 convolution 분해를 활용해서 연산량이 최소화 되는 방향으로 모델의 크기를 키우는데 집중합니다. 그리고 ..