이번에 읽어볼 논문은 SENet, Squeeze-and-Excitation Networks 입니다. SENet은 ILSVRC 2017에서 1등을 한 모델입니다. SENet은 채널간의 상호작용에 집중하여 성능을 끌어올린 모델입니다. 채널 간의 상호작용은 가중치로 생각해볼 수 있습니다. 가중치가 큰 채널은 중요한 특징을 담고있다는 의미로 해석할 수 있습니다. 피쳐맵의 각 채널마다 가중치를 부여하여 피쳐맵의 각 채널에 곱합니다. 즉, SENet은 채널 간의 가중치를 계산하여 성능을 끌어올린 모델로 생각해 볼 수 있습니다. 이제 이 가중치를 어떻게 계산하는지 알아보도록 하겠습니다. 위 그림은 SB Block(Squeeze(압축) + Excitation(재조정))을 통해 채널별 가중치를 계산하고 피쳐맵에 곱해지는..