반응형

residual attention network 2

[논문 구현] PyTorch로 Residual Attention Network(2017) 구현하고 학습하기

이번에 공부해볼 모델은 Residual Attention Network입니다. Pytorch로 구현하고, STL-10 dataset으로 학습까지 진행하겠습니다. 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] Residual Attention Network(2017) 리뷰 안녕하세요! 이번에 소개할 논문은 Residual Attention Network 입니다. Residual Attention Network는 자연어 처리에서 활발하게 이용하고 있는 Attention에서 영감을 받아 탄생한 모델입니다. 실제 Attentio.. deep-learning-study.tistory.com 전체 코드는 여기에서 확인하실 수 있습니다. 1. 데이터셋 불러오기 데이터셋을 불러오기 전에 colab에..

논문 구현 2021.03.27

[논문 읽기] Residual Attention Network(2017) 리뷰

안녕하세요! 이번에 소개할 논문은 Residual Attention Network 입니다. Residual Attention Network는 자연어 처리에서 활발하게 이용하고 있는 Attention에서 영감을 받아 탄생한 모델입니다. 실제 Attention 알고리즘을 사용하지는 않고, 비슷한 개념을 이용하기 때문에 Attention 이름이 붙여졌습니다. Residual Attention Network는 Attention module로 이루어져 있습니다. 그리고, 이 Attention module은 다른 모델과 결합하여 사용할 수 있습니다. Attention module 내부에는 두 파트로 이루어져 있습니다. 마스크를 생성하는 부분과 기존 모듈(residual 모듈, inception 모듈)이 있습니다. ..

반응형