안녕하세요! 이번에 읽어볼 논문은 ShuffleNetV2 입니다. ShuffleNetV1의 후속작인데요. ShuffleNetV1은 제한된 연산량을 최대한 활용하기 위해 channel shuffle와 pointwise group convolution을 제안한 모델입니다. ShuffleNetV2은 연산량이 Inference 속도와 절대적인 관계가 없다고 합니다. 예를 들어, 모델이 가벼워도 실제 task에서 작동되는 속도는 느릴 수 있습니다. 따라서 연산량(FLOPs)가 아닌 inference speed에 집중을 합니다. 그리고, 모델의 Inference 속도를 향상시키는 4가지 가이드라인을 제시합니다. 가이드라인에 따라 구축한 모델이 ShuffleNetV2 입니다. 참고로 Inference 속도가 빨라야 ..