PyTorch로 WRN(Wide Residual Network)를 구현하고 학습까지 해보겠습니다. 작업 환경은 google colab에서 진행했습니다. 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] WRN(2016) 리뷰, Wide Residual Networks 이번에 읽어볼 논문은 WRN, Wide Residual Networks 입니다. WRN은 residual netowrk의 넓이를 증가시키고 깊이를 감소시킨 모델입니다. 16 layer로 이루어진 WRN은 1000-layer ResNet 같은 깊은 신경망을 제.. deep-learning-study.tistory.com 전체 코드는 여기에서 확인하실 수 있습니다. 1. 데이터셋 불러오기 데이터셋은 torchvision 패키지에..