반응형

경사하강법 2

[논문 리뷰] An overview of gradient descent optimization algorithm

안녕하세요! 이번에 리뷰할 논문은 'An overviw of gradient descent optimization' 입니다. 이 논문은 독자에게 optimization algorithm에 대한 직관력을 제공할 목적으로 작성했다고 합니다. optimization에 대해 이해도가 높아지면 설계한 모델에 적합한 algorithm을 선택할 수 있다고 합니다. 이해도를 높이기 위해, gradient descent의 3가지 변종을 살펴보고 해결해야 할 문제점을 제시하고 이 문제점을 해결하기 위해 제시된 8가지 algorithms(Adam, RMSprop, Adagad 등등)를 소개합니다. 경사 하강법(Gradient descent) 논문의 Introduction에 경사 하강법(gradient descent)에 대해..

03-2. 신경망 학습 (2) - 기울기와 경사하강법

(밑바닥부터 시작하는 딥러닝, 사이토고키) 를 바탕으로 작성하였습니다. 신경망 학습 (2) - 기울기와 경사하강법 이전의 포스팅에서는 손실 함수와 수치 미분을 공부했습니다. 이번 포스팅에는 손실 함수의 기울기를 구하고 경사법으로 손실 함수 결과값이 최소가 되는 지점으로 가중치를 갱신시켜주는 방법에 대해 공부해보겠습니다. 4. 기울기 - Gradient 기울기는 모든 변수의 편미분을 벡터로 정리한 것을 의미합니다. $f$($x_0$, $x_1$) = $x_{0}^{2}$ + $x_{1}^{2}$ 이전의 포스팅에서는 $x_0$와 $x_1$의 편미분을 변수별로 따로 계산했습니다. 그럼 $x_0$와 $x_1$의 편미분을 동시에 계산하는 방법을 알아보겠습니다. 위 식에서 $x_0$ = 3, $x_1$ = 4 일때..

반응형