반응형

군집 2

[ISLR] K-평균 군집화(K-Means Clustering)

K-평균 군집화(K-Means Clustering) K-means clustering은 데이터 셋을 K개의 구별되고 겹치치 않는 cluster으로 분할하는 방법입니다. k-means clustering을 수행하기 위하여 cluster의 수 K를 정해야 합니다. 그리고나서 K-means algorithm은 각 관측값을 정확히 K개의 cluster 중 하나에 할당합니다. 아래 그림은 150개의 관측치로 구성된 데이터에 서로 다른 K값을 사용하여 K-means clustering을 수행한 결과입니다. K-means Clustering 절차 $C_1, ... C_K$를 각 cluster 내 관측치들의 인덱스들을 포함하는 집합이라고 하겠습니다. 이 집합은 두 가지 성질을 갖습니다. 1. 각 관측치는 적어도 K개 ..

[OpenCV 머신러닝] OpenCV에서 k-means 알고리즘 사용하기 - cv2.kmeans

OpenCV에서 제공하는 함수를 이용하여 k-means 알고리즘을 이용하는 방법에 대해 공부해보겠습니다. k-평균(k-means) 알고리즘 k-means 알고리즘은 주어진 데이터를 k 개의 구역으로 나누는 군집화(clustering) 알고리즘입니다. 비지도 학습이며 데이터를 무작정 입력으로 주고 임의의 기준으로 나눠주는 형태로 동작하는 알고리즘 입니다. k는 군집 갯수를 의미하여 사용자가 지정해줘야 하는 파라미터입니다. k-means 알고리즘 동작 순서 1. 임의의 k개 중심을 선정합니다. (초기치 중심을 설정해줘야 합니다) 랜덤하게 각 샘플의 중심이라고 간주할 위치를 임의로 선택합니다. 초기 중심점을 어떻게 선정하냐에 따라 결과값이 달라지게 됩니다. 2. 모든 데이터에 대하여 가장 가까운 중심을 선택하..

반응형