반응형

기울기 3

[PyTorch 튜토리얼] 자동 미분 - AUTOGRAD : Automatic differentiation - backward, requires_grad, detach, autograd

공부 목적으로 PyTorch 튜토리얼 홈페이지를 변역해보았습니다. Autograd: Automatic Differentiation — PyTorch Tutorials 1.7.0 documentation Note Click here to download the full example code Autograd: Automatic Differentiation Central to all neural networks in PyTorch is the autograd package. Let’s first briefly visit this, and we will then go to training our first neural network. The autogra pytorch.org 자동미분 - AUTOGRAD : ..

[통계학] 회귀분석 - 회귀계수(기울기)에 대한 통계적 추론 - MSE, 구간추정, 가설검정, 검정통계량

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 회귀계수(기울기)에 대한 통계적 추론 회귀계수 중 기울기에 해당하는 $\beta_1$의 중심축량, 구간추정, 가설검정에 대해 알아보겠습니다. 1. 기울기 $\beta_1$에 대한 추론 $\hat{\beta_1}$은 $\beta_1$의 추정값입니다. $\hat{\beta_1} = S_{xY}/S_{xx}$의 통계적 성질은 다음과 같습니다. $\hat{\beta_1}$의 기댓값은 다음과 같이 구할 수 있습니다. $\hat{\beta_1}$의 분산은 다음과 같습니다. $\hat{\beta_1}$의 기댓값과 분산을 구했으므로 $\hat{\beta_1}$는 다음과 같이 가정할 수 있습니다. 이를 표준화하면 중심축량을 구할 수 있습니다...

03-2. 신경망 학습 (2) - 기울기와 경사하강법

(밑바닥부터 시작하는 딥러닝, 사이토고키) 를 바탕으로 작성하였습니다. 신경망 학습 (2) - 기울기와 경사하강법 이전의 포스팅에서는 손실 함수와 수치 미분을 공부했습니다. 이번 포스팅에는 손실 함수의 기울기를 구하고 경사법으로 손실 함수 결과값이 최소가 되는 지점으로 가중치를 갱신시켜주는 방법에 대해 공부해보겠습니다. 4. 기울기 - Gradient 기울기는 모든 변수의 편미분을 벡터로 정리한 것을 의미합니다. $f$($x_0$, $x_1$) = $x_{0}^{2}$ + $x_{1}^{2}$ 이전의 포스팅에서는 $x_0$와 $x_1$의 편미분을 변수별로 따로 계산했습니다. 그럼 $x_0$와 $x_1$의 편미분을 동시에 계산하는 방법을 알아보겠습니다. 위 식에서 $x_0$ = 3, $x_1$ = 4 일때..

반응형