이번에 읽어볼 논문은 ResNet, 'Deep Residual Learning for Image Recognition' 입니다. ResNet은 residual repesentation 함수를 학습함으로써 신경망이 152 layer까지 가질 수 있습니다. ResNet은 이전 layer의 입력을 다음 layer로 전달하기 위해 skip connection(또는 shorcut connection)을 사용합니다. 이 skip connection은 깊은 신경망이 가능하게 하고 ResNet은 ILSVRC 2015 우승을 했습니다. Plain Network의 문제점 Plain network는 skip/shortcut connection을 사용하지 않은 일반적인 CNN(AlexNet, VGGNet) 신경망을 의미합니다..