반응형

배경 차분 2

[파이썬 OpenCV] 영상의 객체 추적 - 배경 차분 - MOG 배경 모델 - cv2.BackgroundSubtractor

영상의 객체 추적 - 배경 차분 - MOG 배경 모델 MOG 배경 모델을 이용해서 배경 차분을 하는 방법을 알아보겠습니다. 1. MOG란? Mixture of Gaussian, GMM(Gaussian Mixture Model)을 의미합니다. 각 픽셀에 대해 MOG 확률 모델을 설정하여 배경과 전경을 구분하는 방법입니다. 영상의 각각의 픽셀 값을 배경 영상으로 정의합니다. 미리 정의해둔 배경 영상의 각각의 픽셀마다 가우시안 모델을 정의합니다. 픽셀 값이 정해진된 것이 아니라 픽셀 값이 가우시안 형태를 따르는 모델로 정의하는 것입니다. 배경 차분뿐만 아니라 데이터 사이언스에서 전반적으로 사용되는 데이터 분석 기법입니다. 2. 다양한 배경 모델 구성 방법 (1) Static scene static scene은..

[파이썬 OpenCV] 영상의 객체 추적 - 배경 차분 - 이동 평균 배경 - cv2.accumulateWeighted

영상의 객체 추적 - 배경 차분 - 이동 평균 배경 이전 포스팅에서 공부하였던 정적 배경 모델 사용시 문제점은 새로 나타난 객체가 고정되었을 때 이것을 지속적으로 객체로 인식한다는 것입니다. [파이썬 OpenCV] 영상의 객체 추적 - 정적 배경 차분 방법 - cv2.absdiff 함수 영상의 객체 추적 - 정적 배경 차분 방법 배경 차분(Background Subtraction : BS)은 등록된 배경 모델과 현재 입력 프레임과의 차영상을 이용하여 전경 객체를 검출하는 방법입니다. 동영상에서 움직 deep-learning-study.tistory.com 고정된 객체가 일정 시간 지나면 배경으로 등록되는 방법에 대해 알아보겠습니다. 1. 이동 평균 배경 - Moving average 이동 평균 배경 방법..

반응형