반응형

Hog 3

[OpenCV 머신러닝] 학습 데이터 영상을 위치 정규화하여 성능 높이기 - cv2.moments, cv2.warpAffine

학습 데이터 영상 정규화 - Normalization 학습 데이터 영상과 테스트 데이터 영상의 위치, 크기, 회전 등의 요소를 정규화 하면 인식 성능을 향상시킬 수 있습니다. 이번 포스팅에서는 입력 영상의 무게 중심이 전체 영상 중앙이 되도록 위치를 정규화하여 성능을 높여보겠습니다. 무게 중심을 이용한 정규화 방법은 흰색 객체의 x좌표, y좌표를 다 더해서 전체 픽셀수로 나누어서 구현합니다. 무게 중심 정규화 이외에도 회전, 기울기, 크기 정규화를 한다면 더 정확도가 높아질 수 있습니다. 이전 포스팅에서 구현해보았던 HOG&SVM 필기체 숫자 인식 프로그램을 위치 정규화로 성능을 높여보겠습니다. [OpenCV 머신러닝] OpenCV에서 HOG 알고리즘을 이용한 SVM 필기체 숫자 인식 HOG & SVM ..

[OpenCV 머신러닝] OpenCV에서 HOG 알고리즘을 이용한 SVM 필기체 숫자 인식

HOG & SVM 필기체 숫자 인식 픽셀값을 이용하여 SVM을 학습시키는 것보다 HOG 알고리즘으로 추출한 특징 벡터를 이용하여 SVM을 학습시키는 것이 정확도가 더 뛰어납니다. 이번 포스팅에서는 HOG 특징 벡터를 이용한 SVM 학습 방법에 대해 알아보고 필기체 숫자를 인식해 보겠습니다. 필기체 숫자 데이터 필기체 숫자 데이터는 OpenCV 깃허브에서 제공하는 숫자 데이터를 이용했습니다. opencv/opencv Open Source Computer Vision Library. Contribute to opencv/opencv development by creating an account on GitHub. github.com 데이터에는 20X20 숫자 영상이 가로 100개, 세로 50개 총 5000개..

[파이썬 OpenCV] HOG 알고리즘을 이용해서 사람 검출하기 - cv2.HOGDescriptor

1. HOG - Histogram of Oriented Gradients 영상의 지역적 그래디언트 방향 정보를 히스토그램으로 표현해서 영상의 형태를 표현하는 방법입니다. HOG와 SVM 머신러닝을 결합하여 정형화된 객체를 검출하는 알고리즘입니다. 2. HOG 알고리즘 전체 영상에서 부분 영상을 추출해서 부분 영상의 특징을 추출하여 전신을 판단하는 알고리즘입니다. 작동 순서 (1) 임의의 크기의 사각형을 정의해서 부분 영상을 추출합니다. (2) 추출한 부분 영상의 크기를 정규화 합니다. (64X128) (3) 64X128 영상의 그래디언트를 계산하여 방향 성분과 크기 성분을 파악합니다. (4) 64X128 영상을 8X8 크기의 셀(cell)로 분할합니다. (5) 각 셀마다 방향과 크기 성분을 이용하여 방향..

반응형