이번에 소개할 논문은 Pre-Activation ResNet, Identity Mappings in Deep Residual Networks 입니다. ResNet은 skip connection을 활용해 신경망이 수렴이 잘 되도록 하여 층을 깊게 쌓아 정확도를 높인 모델입니다. Pre-Activation ResNet은 기존의 residual block 구조에 활성화 함수의 순서를 바꿔 성능을 끌어올렸습니다. 입력값을 BN과 활성화 함수를 거친 뒤에 convolution layer에 전달한 것입니다. 아래 그림에서 기존 residual block과 pre-activation residual block을 확인할 수 있습니다. 학습곡선에서 점선은 training loss, 굵은 선은 test error 입니다...