반응형

mobilenet 3

[논문 구현] PyTorch로 SENet(2018) 구현하고 학습하기

안녕하세요. 파이토치로 SENet을 구현하고 학습해보도록 하겠습니다. SENet은 SEBlock을 제안한 신경망입니다. SEBlock은 피쳐맵의 채널별 가중치를 계산하고, 이 가중치를 residual unit의 출력 피쳐맵에 곱해줍니다. 이 방법으로 모델의 성능을 개선할 수 있었습니다. SEBlock의 장점은 CNN 구조라면 어떤 모델이든지 사용할 수 있다는 점입니다. resnet, mobilenet, efficientnet 등등 여러 모델에 부착하여 사용할 수 있습니다. 자세한 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] SENet(2018) 리뷰, Squeeze-and-Excitation Networks 이번에 읽어볼 논문은 SENet, Squeeze-and-Excitation ..

논문 구현 2021.03.30

[논문 구현] PyTorch로 MobileNetV1(2017) 구현하고 학습하기

안녕하세요! 이번에 PyTorch로 구현해볼 모델은 MobileNetV1 입니다. MobileNetV1은 모델 경량화를 위해 Depthwise separable convolution을 활용하여 연산량을 감소한 모델입니다. 자세한 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] MobileNet(2017) 리뷰, Efficient Convolutional Neural Networks for Mobile Vision Applications 이번에 읽어볼 논문은 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Application 입니다. MobileNet은 Depthwise separable convolution을..

논문 구현 2021.03.23

[논문 읽기] MobileNet(2017) 리뷰, Efficient Convolutional Neural Networks for Mobile Vision Applications

이번에 읽어볼 논문은 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Application 입니다. MobileNet은 Depthwise separable convolution을 활용하여 모델을 경량화했습니다. Xception은 Depthwise separable convolution을 활용하여 감소한 파라미터 수 많큼 층을 쌓아 성능을 높이는데 집중했는데요. MobileNet은 반대로 경량화에 집중합니다. MobileNet이 경량화에 집중한 이유는 핸드폰이나 임베디드 시스템 같이 저용량 메모리환경에 딥러닝을 적용하기 위해서는 모델 경량화가 필요하기 때문입니다. 메모리가 제한된 환경에서 MobileNet을 최적으로 맞추기 위해 ..

반응형