반응형

object detection 48

[논문 읽기] SSD(2016) 리뷰, Single Shot MultiBox Detector

SSD: Single Shot MultiBox Detector 논문을 읽어보고 정리했습니다. Faster R-CNN은 region proposal network(RPN)을 사용하여 객체가 있을 법한 구역(300개)를 제안하고, detection network를 통해 각 구역의 객체를 검출합니다. 2가지 과정을 걸쳐서 object detection이 수행되며, 이를 2-stage라고 합니다. SSD는 region proposal 과정을 제거하여 1-stage 방식으로 객체를 검출합니다. 이미지를 CNN 모델에 전달하면 객체를 검출할 수 있는 것입니다. 따라서, SSD는 2-stage 방식보다 더 빠릅니다. SSD300은 74.3% mAP, 59FPS 성능으로 Faster R-CNN(73.2% mAP, 7F..

[논문 읽기] Faster R-CNN (2015) 리뷰

이번에 읽어볼 논문은 'Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks' 입니다. Fast R-CNN과 R-CNN에서 region proposals는 selective search로 생성되었습니다. Faster R-CNN에서는 region proposals를 생성하는 작업과 object detection이 동일한 CNN에서 수행됩니다. 즉, region proposal을 생성하는 알고리즘과 detection 알고리즘이 하나로 통합된 신경망이 탄생된 것입니다. 이러한 설계 덕분에 detection 속도가 빨라지게 됩니다. Faster R-CNN은 region proposal를 생성하는 신경망인 RPN(region ..

[논문 읽기] Fast R-CNN(2014) 리뷰

Fast R-CNN Fast R-CNN은 R-CNN과 SPPnet의 단점을 개선한 모델입니다. end-to-end learning이 가능하며, 2000개의 proposals이 모두 CNN에 통과하지 않도록 구조를 개선하여 detecting 속도를 높였습니다. R-CNN 단점 1. 학습이 여러 단계로 나뉘어져 있습니다. R-CNN은 3가지 단계의 학습 과정을 거쳐야 합니다. (1) CNN fine-tuning (2) SVM fine-tuning (3) learn bounding-box regression 2. 학습하는데에 시간이 오래 걸리고 메모리 공간도 많이 차지합니다. SVM과 bounding-box regression은 각 이미지에서 각 proposal로 추출된 특징으로 학습되기 때문입니다. 3. 느..

[논문 리뷰] SPPnet (2014) 리뷰, Spatial Pyramid Pooling Network

이번에 리뷰할 논문은 SPPnet 'Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition' 입니다. SPPnet 등장 배경 SPPnet은 CNN 구조가 고정된 입력 이미지 크기를 입력으로 취하는 데에서 발생한 문제점을 개선하기 위해 고안되었습니다. 기존 CNN은 고정된 입력 크기를 맞춰주기 위해서 crop, wrap을 적용합니다. 참고로, crop과 warp은 classification에서는 data augmentation, detection에서는 region proposal을 입력 사이즈에 맞춰주기 위해 이용합니다. crop과 warp을 적용하면 문제점이 발생합니다. crop을 적용하면 crop된 구역만 CNN을 통과..

[Object Detection] YOLO(v3)를 PyTorch로 바닥부터 구현하기 - Part 3

이 포스팅은 공부 목적으로 아래 게시물을 번역한 글입니다. How to implement a YOLO (v3) object detector from scratch in PyTorch: Part 3 Part 3 of the tutorial series on how to implement a YOLO v3 object detector from scratch in PyTorch. blog.paperspace.com YOLO v3 detector를 바닥부터 구현하는 튜토리얼의 Part 3입니다. 지난 part에서 YOLO 구조에 사용되는 layers를 구현했고, 이번 파트에서는 주어진 이미지로부터 출력값을 생성하기 위해 PyTorch로 YOLO의 신경망 구조를 구현할 것입니다. 이 튜토리얼 코드는 Python ..

[논문 리뷰] R-CNN (2013) 리뷰

안녕하세요! 2021년이 시작함과 동시에 Object detection 논문을 읽게 되었습니다. 첫 번째로 읽어볼 논문은 R-CNN 'Rich feature hierarchies for accurate object detection and semantic segmentation' 입니다. R-CNN은 region proposals와 CNN이 결합된 Regions with CNN의 약자입니다. R-CNN이 등장하기 전 HOG와 SHIFT를 활용한 Object detection 성능은 몇년 동안 정체되어 있었습니다. R-CNN은 이전까지 최고의 성능을 나타낸 기법의 mAP보다 30% 높은 53.3%를 달성하여 detection 분야에 새로운 방향을 제시하게 됩니다. (object detection의 성능 평..

[Object Detection] 비-최대 억제(NMS, Non-maximum Suppression)를 이해하고 파이토치로 구현하기

안녕하세요! 이번 포스팅에서는 비-최대 억제(NMS,Non-maximum Suppression)을 알아보도록 하겠습니다. 비최대 억제를 이해하기 위해서는 IoU(intersection over unio)에 대한 개념을 알아야합니다. IoU에 대한 내용은 아래 링크에 있습니다. [Object Detection] IoU(Intersection over Union)를 이해하고 파이토치로 구현하기 안녕하세요 이번 포스팅에서는 IoU에 대해 알아보도록 하겠습니다. IoU(Intersection over Union)은 무엇일까요? Intersection over Union은 object detector의 정확도를 측정하는데 이용되는 평가 지표입니다.. deep-learning-study.tistory.com 비-최..

[Object Detection] IoU(Intersection over Union)를 이해하고 파이토치로 구현하기

안녕하세요 이번 포스팅에서는 IoU에 대해 알아보도록 하겠습니다. IoU(Intersection over Union)은 무엇일까요? Intersection over Union은 object detector의 정확도를 측정하는데 이용되는 평가 지표입니다. Object detection 논문이나 대회에서 IoU 평가 지표를 쉽게 볼 수 있습니다. 알고리즘이 출력한 예측 바운딩 박스는 IoU를 이용해서 평가될 수 있습니다. IoU를 적용하기 위해서는 두 가지가 필요합니다. 1. ground-truth bounding boxes(testing set에서 object 위치를 labeling 한것) 2. prediceted bounding boxes (model이 출력한 object 위치 예측값) 이 두가지가 있으..

반응형