배깅은 강력한 예측 모델을 구축하기위해 트리를 buidling block으로 사용합니다. 배깅(Bagging) 이전에 공부했었던 부트스트랩(bootstrap)은 관심있는 양의 표준 편차를 계산하기 어려운 상황에서 사용하는 강력한 아이디어 입니다. 이 부트스트랩을 결정트리와 같은 통계 방법 성능을 향상시키기 위해 완전히 다른 맥락으로 사용할 수 있습니다. 결정트리(decision tree)는 high variance가 문제 됩니다. 이는 학습 데이터를 무작위로 두 부분으로 분할하고 의사 결정 트리를 두 부분에 적합하면 두 결과가 상당히 다를 수 있다는 것을 의미합니다. 반면에 low variance는 서로 다른 데이터셋에 반복적으로 적합을 진행해도 동일한 결과를 생성하는 것을 의미합니다. 부트스트랩 통합(..