반응형

retinanet 2

[논문 구현] PyTorch로 RetinaNet(2017) 구현하고 학습하기

RetinaNet을 파이토치로 구현하고, VOC dataset으로 전이 학습까지 진행해보도록 하겠습니다. Computer Vision을 공부하시는 분들에게 많은 도움이 됬으면 합니다. 저도 공부하는 과정에 있어, 구현이 완벽하지 않습니다. 개선점이 있다면 지적 바랍니다. 논문 리뷰는 아래에서 확인하실 수 있습니다. [논문 읽기] RetinaNet(2017) 리뷰, Focal Loss for Dense Object Detection RetinaNet 논문은 모델이 예측하기 어려운 hard example에 집중하도록 하는 Focal Loss를 제안합니다. ResNet과 FPN을 활용하여 구축된 one-stage 모델인 RetinaNet은 focal loss를 사용하여 two-stage 모델 Fas.. dee..

논문 구현 2021.05.06

[논문 읽기] RetinaNet(2017) 리뷰, Focal Loss for Dense Object Detection

RetinaNet 논문은 모델이 예측하기 어려운 hard example에 집중하도록 하는 Focal Loss를 제안합니다. ResNet과 FPN을 활용하여 구축된 one-stage 모델인 RetinaNet은 focal loss를 사용하여 two-stage 모델 Faster R-CNN의 정확도를 능가했습니다. 클래스 불균형 문제(Class imbalance proplem) R-CNN과 같은 two-stage detector이 one-stage detector보다 높은 정확도를 나타내는 것은 일반적입니다. 하지만 one-stage detector(YOLO, SSD)는 속도가 빠르다는 장점이 있습니다. RetinaNet 저자는 one-stage detector의 낮은 정확도의 원인은 객체와 배경 클래스 불균형..

반응형