반응형

기댓값 2

[통계학] 회귀분석 - 회귀계수(절편)에 대한 통계적 추론 - 절편의 중심축량과 구간추정

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 절편 $\beta_0$ 에 대한 통계적 추론 회귀계수 중 절편에 해당하는 $\beta_0$의 중심축량과 구간추정에 대해 알아보겠습니다. 1. $\hat{\beta_0} = \overline{Y} - \hat{\beta_1}\overline{x}$의 역할 x가 0일 때 E(Y)의 값이 $\beta_0$ 입니다. 최소제곱법 추정으로 $\beta_0$ 추정과정을 알아보겠습니다. D를 $b_0$으로 미분함으로써 최소로하는 $b_1$과 $b_0$을 찾습니다. 추정한 $b_1, b_0$를 $\hat{b_1}, $\hat{b_0}$으로 표현합니다. $\beta_0$가 없는 모형에서의 잔차 합은 0이 되지 않을 수 있습니다. $b_0$이 0..

[통계학] 08-3. 확률벡터(3) - 기댓값, 공분산, 상관계수

(통계학-기본개념과 원리, 여인권)을 바탕으로 제작하였습니다. (k-mooc 통계학의 이해1, 여인권)을 수강하면서 공부한 내용을 정리해보았습니다. 두 개 이상의 확률변수에 대한 기댓값 계산 방법을 알아보겠습니다. 두 변수의 직선관계 정도를 나타내는 공분산과 상관계수를 계산하고 독립일 때 이들 값이 0인 것을 보입니다. 두 변수의 선형결합과 관련된 평균과 분산의 성질에 대해 알아보겠습니다. 1. 기댓값 - expected value 두 확률변수 $X$와 $Y$에 대해 $X + Y$나 $XY$의 기댓값은 어떻게 계산해야 할까? 기댓값은 확률변수가 가질 수 있는 값에 해당 확률을 곱하여 다 더한 것으로 정의 했습니다. 두 확률변수의 기댓값은 이들 변수가 가질 수 있는 값에 해당 확률, 즉 결합확률질량함수를 ..

반응형