Fast R-CNN Fast R-CNN은 R-CNN과 SPPnet의 단점을 개선한 모델입니다. end-to-end learning이 가능하며, 2000개의 proposals이 모두 CNN에 통과하지 않도록 구조를 개선하여 detecting 속도를 높였습니다. R-CNN 단점 1. 학습이 여러 단계로 나뉘어져 있습니다. R-CNN은 3가지 단계의 학습 과정을 거쳐야 합니다. (1) CNN fine-tuning (2) SVM fine-tuning (3) learn bounding-box regression 2. 학습하는데에 시간이 오래 걸리고 메모리 공간도 많이 차지합니다. SVM과 bounding-box regression은 각 이미지에서 각 proposal로 추출된 특징으로 학습되기 때문입니다. 3. 느..