일반적인 경우에서 미분가능성(Differentiable: The General Case) 이전 포스팅에서는 이변수함수에 대한 미분가능성(Differentiability for Functions of Two Variables)에 대해 살펴보았습니다. 이번에는 R^n에서 R^m으로의 함수 f에 대한 미분 가능성을 정의하겠습니다. 접평면을 구하는 방법에서 Df(x,y)를 공부했었습니다. 점 x0에서 함수 f = (f1, ... , fm)의 도함수 Df(x0)은 성분이 x0에서 t_ij = af_i/ax_j인 행렬 T 입니다. R^n에서 R^m으로의 함수 f가 두 가지 조건을 만족하면 미분 가능하다고 정의합니다. (1) x0에서 편미분이 존재해야 합니다. (2) 아래의 극한이 만족해야 합니다. 여기서 T는 Df..