반응형

pytorch 82

[논문 구현] PyTorch로 ResNext(2017) 구현하고 학습하기

안녕하세요! 이번 포스팅에서는 ResNext(2017)을 구현하고 학습까지 해보도록 하겠습니다. 작업 환경은 Google Colab에서 진행했습니다. ResNext는 Group Convolution을 제안한 논문입니다. Group Convolution을 활용하면, Conv 연산에서 필요한 연산량이 감소하게 되어서, 동일한 연산량 내에 더 많은 피쳐맵을 활용할 수 있는 이점이 있습니다. ResNext에서 사용하는 Group Convolution이 현재 최신 모델까지 이용하고 있는 것을 보면 영향력이 대단한 것 같네요ㅎㅎ 아래 포스팅에서 논문 리뷰를 확인하실 수 있습니다. [논문 읽기] ResNext(2017) 리뷰, Aggregated Residual Transformations for Deep Neura..

논문 구현 2021.03.29

[PyTorch] Swish 활성화 함수 정의해서 사용하기

안녕하세요! PyTorch로 Swish 함수를 정의해서 사용하는 법을 알아보겠습니다ㅎㅎ Swish 함수는 깊은 신경망에서 ReLU보다 좋은 성능을 나타내는데요, 실제로 EfficientNet은 Swish 활성화 함수를 사용하고 MobileNetV3은 Swish 함수를 수정해서 h-Swish 함수를 사용하고 있습니다. 이 Swish 함수는 파이토치 공식 문서에서 명령어를 제공하고 있지 않아 직접 정의해서 사용해야 합니다. 아래와 같이 Swish 함수 클래스를 정의할 수 있습니다. # Swish activation function class Swish(nn.Module): def __init__(self): super().__init__() self.sigmoid = nn.Sigmoid() def forwa..

[논문 구현] PyTorch로 Residual Attention Network(2017) 구현하고 학습하기

이번에 공부해볼 모델은 Residual Attention Network입니다. Pytorch로 구현하고, STL-10 dataset으로 학습까지 진행하겠습니다. 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] Residual Attention Network(2017) 리뷰 안녕하세요! 이번에 소개할 논문은 Residual Attention Network 입니다. Residual Attention Network는 자연어 처리에서 활발하게 이용하고 있는 Attention에서 영감을 받아 탄생한 모델입니다. 실제 Attentio.. deep-learning-study.tistory.com 전체 코드는 여기에서 확인하실 수 있습니다. 1. 데이터셋 불러오기 데이터셋을 불러오기 전에 colab에..

논문 구현 2021.03.27

[논문 구현] PyTorch로 MobileNetV1(2017) 구현하고 학습하기

안녕하세요! 이번에 PyTorch로 구현해볼 모델은 MobileNetV1 입니다. MobileNetV1은 모델 경량화를 위해 Depthwise separable convolution을 활용하여 연산량을 감소한 모델입니다. 자세한 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] MobileNet(2017) 리뷰, Efficient Convolutional Neural Networks for Mobile Vision Applications 이번에 읽어볼 논문은 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Application 입니다. MobileNet은 Depthwise separable convolution을..

논문 구현 2021.03.23

[논문 구현] PyTorch로 Xception(2017) 구현하고 학습하기

안녕하세요! 이번에 구현해볼 모델은 Xception(2017) 입니다. 작업 환경은 google colab에서 진행했습니다. Xception은 Depthwise separable convolution을 활용해 연산량을 줄인 만큼 층을 깊게 쌓은 모델인데요. 자세한 논문 리뷰는 아래 게시글에서 확인하실 수 있습니다! [논문 읽기] Xception(2017) 리뷰, Deep Learning with Depthwise Separable Convolutions 이번에 읽어볼 논문은 Xception: Deep Learning with Depthwise Separable Convolutions 입니다. Xception은 Inception 모듈에 대한 고찰로 탄생한 모델입니다. Xception은 완벽히 cross-c..

논문 구현 2021.03.23

[논문 구현] PyTorch로 WRN, Wide residual Network(2016) 구현하고 학습하기

PyTorch로 WRN(Wide Residual Network)를 구현하고 학습까지 해보겠습니다. 작업 환경은 google colab에서 진행했습니다. 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] WRN(2016) 리뷰, Wide Residual Networks 이번에 읽어볼 논문은 WRN, Wide Residual Networks 입니다. WRN은 residual netowrk의 넓이를 증가시키고 깊이를 감소시킨 모델입니다. 16 layer로 이루어진 WRN은 1000-layer ResNet 같은 깊은 신경망을 제.. deep-learning-study.tistory.com 전체 코드는 여기에서 확인하실 수 있습니다. 1. 데이터셋 불러오기 데이터셋은 torchvision 패키지에..

논문 구현 2021.03.22

[논문 구현] PyTorch로 PreAct-ResNet(2016) 구현하고 학습하기

이번에 구현해볼 모델은 PreAct-ResNet입니다. 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] Pre-Activation ResNet(2016) 리뷰, Identity Mappings in Deep Residual Networks 이번에 소개할 논문은 Pre-Activation ResNet, Identity Mappings in Deep Residual Networks 입니다. ResNet은 skip connection을 활용해 신경망이 수렴이 잘 되도록 하여 층을 깊게 쌓아 정확도를 높인 모델.. deep-learning-study.tistory.com 전체 코드는 여기에서 확인하실 수 있습니다. 1. 데이터셋 불러오기 데이터셋은 torchvision 패키지에서 제공하는 ST..

논문 구현 2021.03.20

[논문 구현] PyTorch로 InceptionV4(2016) 구현하고 학습하기

이번 포스팅에서는 InceptionV4를 파이토치로 구현하고, 학습까지 진행해보겠습니다. 구현할 모델은 InceptionV4에 residual block을 사용하는 Inception-ResNet-V2 입니다. 작업 환경은 구글 코랩에서 진행했습니다. 논문 리뷰는 여기에서 확인하실 수 있습니다. [논문 읽기] Inception-v4(2016) 리뷰, Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 이번에 소개할 논문은 2017년에 나온 Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 입니다. 저자는 Szegedy..

논문 구현 2021.03.20

[논문 구현] PyTorch로 ResNet(2015) 구현하고 학습하기

이번 포스팅에서는 PyTorch로 ResNet을 구현하고 학습까지 해보겠습니다. 논문 리뷰는 여기에서 확인하실 수 있습니다. [논문 읽기] ResNet(2015) 리뷰 이번에 읽어볼 논문은 ResNet, 'Deep Residual Learning for Image Recognition' 입니다. ResNet은 residual repesentation 함수를 학습함으로써 신경망이 152 layer까지 가질 수 있습니다. ResNet은 이전 lay.. deep-learning-study.tistory.com 전체 코드는 여기에서 확인하실 수 있습니다. github.com/Seonghoon-Yu/paper-implement-in-pytorch 작업 환경은 구글 코랩에서 진행했습니다. 1. 데이터셋 불러오기 데..

논문 구현 2021.03.18

[논문 구현] PyTorch로 GoogLeNet(2014) 구현하고 학습하기

이번 포스팅에서는 GoogLeNet(Inception-v1)을 파이토치로 구현하고 학습까지 해보겠습니다. 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 리뷰] GoogLeNet (2014) 리뷰와 파이토치 구현 공부 목적으로 논문을 읽어보고 요약한 뒤에 파이토치로 구현해보았습니다 이번에 공부할 논문은 'Going deeper with convolutions' (GoogLeNet)입니다. LeNet-5를 시작으로 CNN은 이미지 분류에서 일반적 deep-learning-study.tistory.com 전체 코드는 여기에서 확인하실 수 있습니다! 스타도 부탁드리겠습니다! 1. 데이터셋 불러오기 데이터셋은 torchvision 패키지에서 제공하는 STL10 dataset을 이용합니다. STL10 ..

논문 구현 2021.03.16
반응형