반응형

논문 구현 27

[논문 구현] PyTorch로 RetinaNet(2017) 구현하고 학습하기

RetinaNet을 파이토치로 구현하고, VOC dataset으로 전이 학습까지 진행해보도록 하겠습니다. Computer Vision을 공부하시는 분들에게 많은 도움이 됬으면 합니다. 저도 공부하는 과정에 있어, 구현이 완벽하지 않습니다. 개선점이 있다면 지적 바랍니다. 논문 리뷰는 아래에서 확인하실 수 있습니다. [논문 읽기] RetinaNet(2017) 리뷰, Focal Loss for Dense Object Detection RetinaNet 논문은 모델이 예측하기 어려운 hard example에 집중하도록 하는 Focal Loss를 제안합니다. ResNet과 FPN을 활용하여 구축된 one-stage 모델인 RetinaNet은 focal loss를 사용하여 two-stage 모델 Fas.. dee..

논문 구현 2021.05.06

[논문 구현] PyTorch로 YOLOv3(2018) 구현하고 학습하기

안녕하세요! 이번에는 YOLOv3을 PyTorch로 구현하고 학습까지 해보도록 하겠습니다. 작업환경은 Google Colab에서 진행했습니다. YOLOv3 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] YOLOv3(2018) 리뷰 이번에 읽어볼 논문은 'YOLOv3: An Incermetal Improvement' 입니다. YOLOv3은 YOLOv2에서 개선된 버전입니다. 예를 들어, FPN을 사용하여 multi-scale에서 feature을 추출하고, shortcut connection을 활용한 D.. deep-learning-study.tistory.com 전체 코드는 여기에서 확인하실 수 있습니다. 아래 코드를 분석하여 구현해보았습니다. https://github.com/ayoo..

논문 구현 2021.04.04

[논문 구현] PyTorch로 EfficientNet(2019) 구현하고 학습하기

이번에 구현해볼 모델은 EfficientNet(2019) 입니다. EfficientNet은 강화학습으로 최적의 모델을 찾는 MnasNet의 구조를 사용합니다. MnasNet 구조에서 compound scaling을 적용하여 성능을 끌어올린 것이 EfficientNet입니다. compound scaling은 width, deepth, resolution 3가지 요소의 관계를 수식으로 정의해서 주어진 연산량에 맞게 효율적으로 width, deepth ,resolution를 조절하는 방법입니다. 자세한 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] EfficientNet(2019) 리뷰, Rethinking Model Scaling for Convolutional Neural Network..

논문 구현 2021.03.30

[논문 구현] PyTorch로 SENet(2018) 구현하고 학습하기

안녕하세요. 파이토치로 SENet을 구현하고 학습해보도록 하겠습니다. SENet은 SEBlock을 제안한 신경망입니다. SEBlock은 피쳐맵의 채널별 가중치를 계산하고, 이 가중치를 residual unit의 출력 피쳐맵에 곱해줍니다. 이 방법으로 모델의 성능을 개선할 수 있었습니다. SEBlock의 장점은 CNN 구조라면 어떤 모델이든지 사용할 수 있다는 점입니다. resnet, mobilenet, efficientnet 등등 여러 모델에 부착하여 사용할 수 있습니다. 자세한 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] SENet(2018) 리뷰, Squeeze-and-Excitation Networks 이번에 읽어볼 논문은 SENet, Squeeze-and-Excitation ..

논문 구현 2021.03.30

[논문 구현] PyTorch로 ResNext(2017) 구현하고 학습하기

안녕하세요! 이번 포스팅에서는 ResNext(2017)을 구현하고 학습까지 해보도록 하겠습니다. 작업 환경은 Google Colab에서 진행했습니다. ResNext는 Group Convolution을 제안한 논문입니다. Group Convolution을 활용하면, Conv 연산에서 필요한 연산량이 감소하게 되어서, 동일한 연산량 내에 더 많은 피쳐맵을 활용할 수 있는 이점이 있습니다. ResNext에서 사용하는 Group Convolution이 현재 최신 모델까지 이용하고 있는 것을 보면 영향력이 대단한 것 같네요ㅎㅎ 아래 포스팅에서 논문 리뷰를 확인하실 수 있습니다. [논문 읽기] ResNext(2017) 리뷰, Aggregated Residual Transformations for Deep Neura..

논문 구현 2021.03.29

[논문 구현] PyTorch로 Residual Attention Network(2017) 구현하고 학습하기

이번에 공부해볼 모델은 Residual Attention Network입니다. Pytorch로 구현하고, STL-10 dataset으로 학습까지 진행하겠습니다. 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] Residual Attention Network(2017) 리뷰 안녕하세요! 이번에 소개할 논문은 Residual Attention Network 입니다. Residual Attention Network는 자연어 처리에서 활발하게 이용하고 있는 Attention에서 영감을 받아 탄생한 모델입니다. 실제 Attentio.. deep-learning-study.tistory.com 전체 코드는 여기에서 확인하실 수 있습니다. 1. 데이터셋 불러오기 데이터셋을 불러오기 전에 colab에..

논문 구현 2021.03.27

[논문 구현] PyTorch로 MobileNetV1(2017) 구현하고 학습하기

안녕하세요! 이번에 PyTorch로 구현해볼 모델은 MobileNetV1 입니다. MobileNetV1은 모델 경량화를 위해 Depthwise separable convolution을 활용하여 연산량을 감소한 모델입니다. 자세한 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] MobileNet(2017) 리뷰, Efficient Convolutional Neural Networks for Mobile Vision Applications 이번에 읽어볼 논문은 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Application 입니다. MobileNet은 Depthwise separable convolution을..

논문 구현 2021.03.23

[논문 구현] PyTorch로 Xception(2017) 구현하고 학습하기

안녕하세요! 이번에 구현해볼 모델은 Xception(2017) 입니다. 작업 환경은 google colab에서 진행했습니다. Xception은 Depthwise separable convolution을 활용해 연산량을 줄인 만큼 층을 깊게 쌓은 모델인데요. 자세한 논문 리뷰는 아래 게시글에서 확인하실 수 있습니다! [논문 읽기] Xception(2017) 리뷰, Deep Learning with Depthwise Separable Convolutions 이번에 읽어볼 논문은 Xception: Deep Learning with Depthwise Separable Convolutions 입니다. Xception은 Inception 모듈에 대한 고찰로 탄생한 모델입니다. Xception은 완벽히 cross-c..

논문 구현 2021.03.23

[논문 구현] PyTorch로 DenseNet(2017) 구현하고 학습하기

이번 포스팅에서는 DenseNet을 파이토치로 구현하고 학습까지 해보겠습니다! 작업 환경은 Google Colab에서 진행했습니다. 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] DenseNet(2017) 리뷰, Densely Connected Convolutional Networks 이번에 읽어볼 논문은 DenseNet, 'Densely Connected Convolutional Networks'입니다. DenseNet은 ResNet과 Pre-Activation ResNet보다 적은 파라미터 수로 더 높은 성능을 가진 모델입니다. DensNet은 모든.. deep-learning-study.tistory.com 전체 코드는 여기에서 확인하실 수 있습니다. 모델을 구현하기 전에, co..

논문 구현 2021.03.22

[논문 구현] PyTorch로 WRN, Wide residual Network(2016) 구현하고 학습하기

PyTorch로 WRN(Wide Residual Network)를 구현하고 학습까지 해보겠습니다. 작업 환경은 google colab에서 진행했습니다. 논문 리뷰는 아래 포스팅에서 확인하실 수 있습니다. [논문 읽기] WRN(2016) 리뷰, Wide Residual Networks 이번에 읽어볼 논문은 WRN, Wide Residual Networks 입니다. WRN은 residual netowrk의 넓이를 증가시키고 깊이를 감소시킨 모델입니다. 16 layer로 이루어진 WRN은 1000-layer ResNet 같은 깊은 신경망을 제.. deep-learning-study.tistory.com 전체 코드는 여기에서 확인하실 수 있습니다. 1. 데이터셋 불러오기 데이터셋은 torchvision 패키지에..

논문 구현 2021.03.22
반응형