반응형

다중비교 3

[통계학] 확률화 블록 계획법 - 이원배치 분산분석과의 차이점과 분석결과 해석 방법

여인권 교수님의 KMOOC 강의 "통계학의 이해 2"를 수강하면서 공부한 내용을 정리해보았습니다. 확률화블록설계의 개념과 단순 이원배치 분산분석과의 차이점을 알아보겠습니다. 확률화블록설계에 의한 분석결과를 어떻게 해석해야 하는지 알아보겠습니다. 확률화 블록 계획법 블록(block)은 요인의 처리 효과를 비교하는데 정확도를 높이기 위해 예비 지식을 이용하여 나눈 동일적인 실험 단위를 의미합니다. 예를 들어 수준(처리)는 처치 방법(관심 요인)이면 블록은 성별 또는 연령으로 구분할 수 있습니다. 쌍을 이룬 비교의 일반화(대응표본의 일반화)를 한 것입니다. 블록은 차이가 있다고 가정하므로 가설검정을 하지 않습니다. 1. 실험설계 p개의 수준(처리)과 b개의 블록이 있다고 가정하겠습니다. 각 블록 안에서 처리 ..

[통계학] 고정효과모형의 모형식과 통계적 추론 - 이원배치 분산분석, 반복이 없는 경우

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 요인이 두 개이고 각 처리에 하나의 관측값이 있는 경우, 각 요인의 처리효과를 확인하기 위해 어떻게 모형을 설정하는지 알아보겠습니다. 고정효과 모형 하에서의 통계적 추론을 알아보겠습니다. 이원배치 분산분석 이원배치 분산분석의 실험을 설계하면 다음과 같습니다. 요인 A의 수준 수는 p, 요인 B의 수준 수는 q일 때 p X q 처리를 완전 확률화 하여 실험을 진행한다고 가정하겠습니다. 자료구조는 다음과 같이 확인할 수 있습니다. 여기서 요인A와 요인B가 있는데, 두 요인 모두 실험자가 결정하는 것을 고정효과모형(fixed effect models) 두 요인 모두 무작위로 선택하는 것은 변량효과모형(random effect mod..

[통계학] 분산분석 - 다중비교 - Fisher LSD, Bonferroni, Scheffe, Tukey HSD

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 처리효과가 있다고 할 때, 어떤 수준들 간에 차이가 있는지 확인하기 위해 모든 평균 차의 조합에 대해 유의성을 검정하는 방법을 알아보겠습니다. 다중비교 - Multiple comparison 분산분석 고정효과모형 가설검정을 통해 처리효과가 있다고 판단될때 다중비교를 통해 어떤 수준들 간에 차이가 있는지 확인할 수 있습니다. 모든 그룹의 평균에 대해 검정하는 방법입니다. 다중비교 방법은 여러가지가 있습니다. 여기서 배워볼 방법은 Fisher's LSD, Bonferroni's MSD, Scheffe, Tukey HSD 방법입니다. 1. Fisher's least significant difference - 최소유의차 방법, LS..

반응형