반응형

분산분석표 4

[통계학] 확률화 블록 계획법 - 이원배치 분산분석과의 차이점과 분석결과 해석 방법

여인권 교수님의 KMOOC 강의 "통계학의 이해 2"를 수강하면서 공부한 내용을 정리해보았습니다. 확률화블록설계의 개념과 단순 이원배치 분산분석과의 차이점을 알아보겠습니다. 확률화블록설계에 의한 분석결과를 어떻게 해석해야 하는지 알아보겠습니다. 확률화 블록 계획법 블록(block)은 요인의 처리 효과를 비교하는데 정확도를 높이기 위해 예비 지식을 이용하여 나눈 동일적인 실험 단위를 의미합니다. 예를 들어 수준(처리)는 처치 방법(관심 요인)이면 블록은 성별 또는 연령으로 구분할 수 있습니다. 쌍을 이룬 비교의 일반화(대응표본의 일반화)를 한 것입니다. 블록은 차이가 있다고 가정하므로 가설검정을 하지 않습니다. 1. 실험설계 p개의 수준(처리)과 b개의 블록이 있다고 가정하겠습니다. 각 블록 안에서 처리 ..

[통계학] 변량효과모형과 혼합효과모형의 모형식과 통계적 추론 - 이원배치 분산분석 - 반복이 없는 경우

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 변량효과모형과 혼합효과모형에서의 가정과 모형식을 알아보겠습니다. 변량효과모형과 혼합효과모형에서 주요 모수에 대한 통계적 추론 방법을 알아보겠습니다. 변량효과모형 - Random Effect Model (1) 모형식 설계 이원배치 분산분석에서의 변량효과모형의 모형식은 다음과 같이 설계할 수 있습니다. (2) 변량효과모형 가정 변량효과모형은 다음과 같이 가정할 수 있습니다. (3) 가설검정 변량효과모형에서의 평균은 확률변수입니다. 따라서 분산에 관심이 있습니다. 가설검정은 다음과 같이 설정할 수 있습니다. (4) 분산분석표 유의하지 않는 요인의 처리효과는 오차에 흡수시켜 다시 분석합니다. (5) 처리수준 분산 추정 MSE, MSA..

[통계학] 고정효과모형의 모형식과 통계적 추론 - 이원배치 분산분석, 반복이 없는 경우

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 요인이 두 개이고 각 처리에 하나의 관측값이 있는 경우, 각 요인의 처리효과를 확인하기 위해 어떻게 모형을 설정하는지 알아보겠습니다. 고정효과 모형 하에서의 통계적 추론을 알아보겠습니다. 이원배치 분산분석 이원배치 분산분석의 실험을 설계하면 다음과 같습니다. 요인 A의 수준 수는 p, 요인 B의 수준 수는 q일 때 p X q 처리를 완전 확률화 하여 실험을 진행한다고 가정하겠습니다. 자료구조는 다음과 같이 확인할 수 있습니다. 여기서 요인A와 요인B가 있는데, 두 요인 모두 실험자가 결정하는 것을 고정효과모형(fixed effect models) 두 요인 모두 무작위로 선택하는 것은 변량효과모형(random effect mod..

[통계학] 분산분석표, 고정효과모형과 변량효과모형에서 F통계량의 분모와 분자인 평균제곱의 통계적 성질

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 자료들의 변동을 요소별로 분해하여 정리한 분산분석표에 대해 알아보겠습니다. 고정효과모형과 변량효과모형에서 F통계량의 분모와 분자인 평균제곱의 통계적 성질을 알아보겠습니다. 변동분해 모형식을 정리하여 변동을 요소별로 분해할 수 있습니다. 모형식이 다음과 같을때, TSS(변동), SSE(잔차제곱합), SSTR(처리제곱합) 으로 분해할 수 있습니다. $\mu$는 평균, $\alpha$는 처리효과, $\epsilon$은 오차를 의미합니다. 모형식을 정리하면 다음과 같이 표현할 수 있습니다. 이 식을 제곱한 값을 모두 더해주면 다음과 같이 됩니다. 이 식을 정리하면 세 가지 변동으로 분해됩니다. SSE + SSTR = TSS가 됩니다...

반응형