반응형

논문 읽기/Classification 50

[논문 읽기] Inception-v4(2016) 리뷰, Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

이번에 소개할 논문은 2017년에 나온 Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 입니다. 저자는 Szegedy 입니다. Inception-v1(GoogLeNet), Inception-v2, v3은 이미지 분류 대회에서 항상 좋은 성적을 거둬왔습니다. Inception 계열의 특징은 적은 파라미터수를 갖지만 모델이 다소 복잡합니다. 이 복잡성 때문에 VGGnet이 GoogLeNet보다 흔하게 사용되었죠. inceptio-v1에서 개선된 v4에는 어떤 점이 변화되었는지 살펴보겠습니다. 이 논문에서 Inception-v4와 Inception-ResNet을 소개합니다. Inception-v4는 Incepti..

[논문 읽기] WRN(2016) 리뷰, Wide Residual Networks

이번에 읽어볼 논문은 WRN, Wide Residual Networks 입니다. WRN은 residual netowrk의 넓이를 증가시키고 깊이를 감소시킨 모델입니다. 16 layer로 이루어진 WRN은 1000-layer ResNet 같은 깊은 신경망을 제치고 SOTA를 달성했습니다. 신경망의 넓이를 증가한다는 의미는 filter수를 증가시킨다는 것을 의미합니다. 즉, WRN은 residual block을 구성하는 convolution layer의 filter 수를 증가시켜서 신경망의 넓이를 증가시켰습니다. 등장 배경 지금까지, CNN은 깊이를 증가시키는 방향으로 발전해왔습니다. 예를 들어, AlexNet, VGG, Inception, ResNet과 같은 모델이 있습니다. 모델의 깊이가 깊어지는 만큼 ..

[논문 읽기] Inception-v3(2015) 리뷰, Rethinking the Inception Architecture for Computer Vision

이번에 읽어볼 논문은 Rethinking the Inception Architecture for Computer Vision 입니다. 본 논문에서는 Inception-v2와 Inception-v3을 소개합니다. 일반적으로, 모델 크기를 증가시키면 정확도와 연산량이 증가합니다. 예를들어, ResNet은 skip connection을 활용해서 모델의 깊이를 증가시켜 성능을 끌어올렸습니다. 하지만 깊어진 만큼 연산량이 많아져 학습하는데에 시간이 오래 걸립니다. 이처럼 모델 크기를 증가시키면 연산량이 증가하게 되는데, 이는 mobile이나 제한된 메모리에서 활용해야 할때, 단점으로 작용합니다. 저자는 convolution 분해를 활용해서 연산량이 최소화 되는 방향으로 모델의 크기를 키우는데 집중합니다. 그리고 ..

[논문 읽기] Pre-Activation ResNet(2016) 리뷰, Identity Mappings in Deep Residual Networks

이번에 소개할 논문은 Pre-Activation ResNet, Identity Mappings in Deep Residual Networks 입니다. ResNet은 skip connection을 활용해 신경망이 수렴이 잘 되도록 하여 층을 깊게 쌓아 정확도를 높인 모델입니다. Pre-Activation ResNet은 기존의 residual block 구조에 활성화 함수의 순서를 바꿔 성능을 끌어올렸습니다. 입력값을 BN과 활성화 함수를 거친 뒤에 convolution layer에 전달한 것입니다. 아래 그림에서 기존 residual block과 pre-activation residual block을 확인할 수 있습니다. 학습곡선에서 점선은 training loss, 굵은 선은 test error 입니다...

[논문 읽기] ResNet(2015) 리뷰

이번에 읽어볼 논문은 ResNet, 'Deep Residual Learning for Image Recognition' 입니다. ResNet은 residual repesentation 함수를 학습함으로써 신경망이 152 layer까지 가질 수 있습니다. ResNet은 이전 layer의 입력을 다음 layer로 전달하기 위해 skip connection(또는 shorcut connection)을 사용합니다. 이 skip connection은 깊은 신경망이 가능하게 하고 ResNet은 ILSVRC 2015 우승을 했습니다. Plain Network의 문제점 Plain network는 skip/shortcut connection을 사용하지 않은 일반적인 CNN(AlexNet, VGGNet) 신경망을 의미합니다..

[논문 리뷰] VGGNet(2014) 리뷰와 파이토치 구현

안녕하세요 이번에 읽어볼 논문은 'Very Deep Convolutional Networks for large-scale image recognition'(VGGNet) 입니다. VGGNet은 19 layer를 지닌 깊은 network로 ILSVRC 2014 대회에서 2등을 차지했습니다. 역대 ILSVRC 우승작 network의 깊이는 8 layer에 불가했습니다. 깊이가 깊어짐에 따라 overfitting, gradient vanishing, 연산량 문제가 생기기 때문에 깊이를 증가시키는 것이 쉬운 문제는 아니었습니다. VGGNet은 어떻게 문제들을 해결하고 깊이를 19 layer까지 증가할 수 있었을까요?? VGGNet 논문에 나와있는 핵심 내용을 간추려 보았습니다. 1. 깊이를 증가하면 정확도가 좋..

[논문 리뷰] GoogLeNet (2014) 리뷰와 파이토치 구현

공부 목적으로 논문을 읽어보고 요약한 뒤에 파이토치로 구현해보았습니다 이번에 공부할 논문은 'Going deeper with convolutions' (GoogLeNet)입니다. LeNet-5를 시작으로 CNN은 이미지 분류에서 일반적인 구조가 되었습니다. CNN 구조에 dropout, pooling, ReLu, GPU 기법이 적용된 AlexNet이 ILSVRC 2012년 대회에서 우승을 차지하고 CNN을 세상에 알리게 됩니다(이전까진 머신러닝 기법이 대회를 우승했습니다). 2년 뒤 Inception block을 적용한 CNN 모델인 GoogLeNet이 ILSVRC 2014년 대회에서 우승을 차지하게 됩니다. GoogLeNet을 우승으로 이끈 Inception block에 대해 알아보고, 추가적으로 적용..

[논문 리뷰] AlexNet(2012) 리뷰와 파이토치 구현

딥러닝 논문 읽고 파이토치로 구현하기 시리즈 1. [논문 리뷰] LeNet-5 (1998), 파이토치로 구현하기 이번에 읽어볼 논문은 'ImageNet Classification with Deep Convilutional Neural Networks'(AlexNet) 입니다. AlexNet 컴퓨터 비전 분야의 '올림픽'이라 할 수 있는 ILSVRC(ImageNet Large-Scale Visual Recognition Challenge)의 2012년 대회에서 AlexNet이 Top 5 test error 기준 15.4%를 기록해 2위(26.2%)를 큰 폭으로 따돌리고 1위를 차지했습니다. (Top 5 test error란 모델이 예측한 최상위 5개 범주 가운데 정답이 없는 경우의 오류율을 말합니다.) 이..

[논문 리뷰] LeNet-5 (1998), 파이토치로 구현하기

가장 기본적인 CNN 구조인 LeNet-5 논문을 읽어보고 파이토치로 직접 구현해보면서 CNN에 대한 이해도를 높여보겠습니다. LeNet-5은 1998년 Yann LeCun의 논문 'Gradient-Based Learning Applied to Document Recognition' 에 담겨있는 CNN 신경망의 구조를 의미합니다. 위 논문은 46page에 달하는 논문으로 문자 인식 업무에 CNN이 효과적인 이유에 대해 기술되어 있어, 읽어본다면 CNN에 대한 이해도를 높일 수 있을 것이라고 생각 합니다. 이제, 논문을 요약해보고 PyTorch로 구현해보겠습니다. 1. LeNet-5 등장 배경 LeNet-5은 Yann LeCun이 손으로 적힌 우편 번호를 전통적인 방법보다 효율적으로 확인하기 위해 고안된 ..

반응형