반응형

linear algebra and its application 7

[선형대수학] 4.1 고유벡터와 고유값 - Eigenvectors and eigenvalue

이번 포스팅에서는 고유벡터와 고유값에 대해 알아보겠습니다. 고유값 - eigenvalue 고유벡터 - eigenvector 고유공간 - eigenspace 1. 고유값과 고유벡터의 기본 아이디어 행렬 A, u, v가 다음과 같이 주어졌을 때 곱셈 결과를 시각적으로 표현해 보겠습니다. Av의 결과는 동일한 line에 solution이 존재하도록 결과가 나왔습니다. 이것이 Eigenvalue와 Eigenvector의 기본 idea입니다. 2. 고유벡터 - Eigenvector 고유벡터를 정의하면 다음과 같습니다. Ax = $\lambda$x를 만족하는 nonzero vector x가 eigenvector입니다. 또한, Ax = $\lambda$x에서 x가 nontrivial solution이 존재할 때 sc..

[선형대수학] 3.1 행렬식 개요 - Introduction to Determinants - 행렬식, 여인수, 여인수 전개

이번 포스팅에서 알아볼 내용은 행렬식 - determinant 여인수 - cofactor 여인수 전개 - cofactor expansion 입니다. 1. 2 x 2 Matirx 2장에서 배운 것을 복습하면 2 x 2 행렬에서의 determinant가 nonzero이면 invertible입니다. 2. 3 x 3 역행렬이 존재하는 행렬 - 3 x 3 invertible matrix 2 x 2 행렬의 determinant를 구하는 건 비교적 쉽습니다. 3 x 3 이상 행렬 부터는 determinant를 구하는 것이 복잡해집니다. determinant가 0이 아닌 것의 의미는 모든 row에 pivot이 존재한다는 의미입니다. 따라서 row reduction을 진행하고 모든 pivot이 nonzero임을 확인하면..

[선형대수학] 2.5 LU 분해 - LU decomposition - Factorization, LU 분해 이점, LU 분해 알고리즘

이번 포스팅에서는 LU 분해(LU deposition)에 대해 알아보겠습니다. LU분해는 실제 문제를 해결할때 유용하게 쓰이므로 공대생에게 매우 중요합니다. 1. 분해 - Factorization, decomposition 분해는 하나의 행렬을 두개 혹은 3개 이상의 행렬 곱으로 표현한 식을 의미합니다. A=BC A 행렬을 B와 C의 곱으로 표현했는데 이런 형태를 분해(factorization)이라고 합니다. 2. LU 분해 - LU decomposition 방정식을 푸는 방식은 크게 두 가지가 있습니다. (1) A의 역행렬을 이용 이 경우에 $A^{-1}b_1, A^{-1}b_2$ 모든 경우를 구해야 하므로 비효율적입니다. (2) LU 분해 행 줄임(row reduction)으로 A를 LU분해하여 방적..

[선형대수학] 1.3 벡터 방정식 - Vector Equations - Span{}, 선형 결합, 벡터의 대수학적 성질

이번 포스팅에서 공부할 것은 다음과 같습니다. vectors in $R^n$ : algevraic propreties(대수학적 성질) linear combination(선형 결합)과 vector equation(벡터 방정식)의 관계 Span{} 1. 2차원 실수체계에서의 벡터 - Vectors in $R^2$ $R^2$가 의미하는 것은 2차원 실수체계를 의미합니다. 벡터의 표현 방법으로는 3가지가 있습니다. (1) 대괄호 (2) 좌표 u=(3,-1), v=(.2,.3) (3) 화살표 원점에서부터 vector point까지 화살표를 그려 표현합니다. 2. 벡터 덧셈 - Vector summation 2차원 실수체계 공간에서 두 개의 벡터가 주어졌을 때 덧셈을 할 수 있습니다. 3. 스칼라 곱 - Scala..

[선형대수학] 1.1 선형 방정식계 - Systems of Linear Equations - 소거법, 행 상등, 해의 집합, 행 연산, 행렬 표기법

이번 포스팅에서 공부할 것은 다음과 같습니다. 선형 방정식 - linear equation 선형 방정식 계 - sysyems of linea equation 해의 집합 - solution set consistent/inconsistent 의미 - no solution, exactly one solution, infinity many solutions 행렬 표기법 - matrix notation 소거법 - elimination 행 연산 - row operation (replacement, interchange, scaling) 상등(equivalent)/ 행 상등(row equivalent) 1. 선형 방정식 - linear equation $x_1, ... , x_n$ 변수로 이루어진 선형 방저식은 다음..

[선형대수학] ch1-2 선형방정식의 기하학 - 특이한 경우

gilbert strang 교수님의 linear algebra and its applications를 공부하면서 번역과 정리를 해보았습니다. 특이한 경우 - The Singular Case 3개의 평면이 한 점에서 교차하지 않을 때 특이한 경우(The SIngular Case)라고 합니다. 그 경우에 해가 없거나 해가 무수히 많게 됩니다. 하나하나 살펴보겠습니다. 1. 해가 없는 경우 (no solution) (1) 두 개의 평면이 평행할 때 위 경우에 3개의 평면은 한 점에서 교차하지 않습니다. 두 개의 평면이 평행하기 때문입니다. 2u+v+w=5와 4u+2v+2w=11는 일치하지 않습니다.(inconsistent) 이러한 경우 해가 없습니다. (2) 세 개의 평면이 평행하지 않는 경우 위 경우는 모든..

[선형대수학] ch1.2 선형방정식의 기하학 - n=3인 경우 row picture과 column picture, 선형 결합

gilbert strang 교수님의 linear algebra and its applications를 공부하면서 번역과 정리를 해보았습니다. 선형방정식의 기하학을 예제 문제를 통해 이해하도록 하겠습니다. n=3인 경우(미지수 3개, 방정식 3개) n=3인 경우를 살펴보겠습니다. 1. row 관점으로 선형방정식을 기하학적으로 표현하기(row picture) 각 방정식은 3차원에서 평면으로 서술할 수 있습니다. 첫 번째 평면은 2u+v+w=5이고 아래 그림처럼 표현할 수 있습니다. 또한 (5/2, 0, 0), (0, 5, 0), (0, 0, 5)를 지나가게 됩니다. 2u+v+w=5에서 5를 10으로 바꾸면 2u+v+w=10이 됩니다. 이는 첫 번째 평면과 평행하게 됩니다. 이처럼 오른쪽 항을 변경하는 것은 ..

반응형