반응형

중심축량 11

[통계학] 회귀분석 - 새로운 관측값에 대한 예측 - 중심축량과 예측구간

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 새로운 관측값에 대한 예측 새로운 설명변수(x)에 대한 예측값에 대한 추정과 예측구간을 알아보겠습니다. 저번 포스팅에서는 $x_k$일 때, $y_k$의 평균의 예측값을 공부했습니다. 평균의 예측값을 구할 때는 관심이 $b_0 + b_1x_k$에 관심이 있었지만 새로운 관측값에 대한 예측은 오차까지 고려한 $b_0 + b_1x_k + \epsilon_k$에 관심이 있습니다. 1. 새로운 $x_*$에 대한 예측값 $Y_*$의 추론 $\hat{Y_*}$에 관심이 있으면 $\hat{b_0} + \hat{b_1}x_*$를 이용해도 되지만 $\epsilon_*$에 관심이 있으면 예측오차 $\hat{Y_*} - Y_*$에 관심을 가져야 합..

[통계학] 회귀분석 - 예측값 평균에 대한 통계적 추론 - 중심축량, 신뢰구간

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 예측값 평균에 대한 통계적 추론 예측값의 평균, E(Y) = $b_0$ + $b_1x$를 추론하기 위한 중심축량과 예측구간을 알아보겠습니다. 1. 반응변수 기댓값 E($Y_k$)에 대한 추론 주의할 점은 $Y_k$를 직접 추론하는 것이 아니라 E($Y_k$)를 추론하는 것입니다. 점추정량의 성질에 대해 알아보겠습니다. 점추정량을 Y들의 선형 결합으로 나타낼 수 있습니다. 이는 정규분포를 따른다는 것을 의미합니다. 추정된 예측값 평균은 다음과 같이 표시할 수 있습니다. 분산은 다음과 같습니다. 이는 $x_k$가 $\overline{x}$에서 멀어질수록 분산이 커진다는 것을 의미합니다. 평균과 분산을 구했으므로 $\hat{Y_k}..

[통계학] 회귀분석 - 회귀계수(절편)에 대한 통계적 추론 - 절편의 중심축량과 구간추정

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 절편 $\beta_0$ 에 대한 통계적 추론 회귀계수 중 절편에 해당하는 $\beta_0$의 중심축량과 구간추정에 대해 알아보겠습니다. 1. $\hat{\beta_0} = \overline{Y} - \hat{\beta_1}\overline{x}$의 역할 x가 0일 때 E(Y)의 값이 $\beta_0$ 입니다. 최소제곱법 추정으로 $\beta_0$ 추정과정을 알아보겠습니다. D를 $b_0$으로 미분함으로써 최소로하는 $b_1$과 $b_0$을 찾습니다. 추정한 $b_1, b_0$를 $\hat{b_1}, $\hat{b_0}$으로 표현합니다. $\beta_0$가 없는 모형에서의 잔차 합은 0이 되지 않을 수 있습니다. $b_0$이 0..

[통계학] 회귀분석 - 회귀계수(기울기)에 대한 통계적 추론 - MSE, 구간추정, 가설검정, 검정통계량

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 회귀계수(기울기)에 대한 통계적 추론 회귀계수 중 기울기에 해당하는 $\beta_1$의 중심축량, 구간추정, 가설검정에 대해 알아보겠습니다. 1. 기울기 $\beta_1$에 대한 추론 $\hat{\beta_1}$은 $\beta_1$의 추정값입니다. $\hat{\beta_1} = S_{xY}/S_{xx}$의 통계적 성질은 다음과 같습니다. $\hat{\beta_1}$의 기댓값은 다음과 같이 구할 수 있습니다. $\hat{\beta_1}$의 분산은 다음과 같습니다. $\hat{\beta_1}$의 기댓값과 분산을 구했으므로 $\hat{\beta_1}$는 다음과 같이 가정할 수 있습니다. 이를 표준화하면 중심축량을 구할 수 있습니다...

[통계학] 회귀추론을 위한 기본이론 - 회귀모델에서의 MSE와 중심축량

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 회귀추론을 위한 기본이론 회귀모형의 모수 또는 예측값을 추론을 위한 기본 통계이론을 정리하겠습니다. 1. 회귀 모형식 가정 단순회귀모형에서 모형식은 다음과 같이 가정할 수 있습니다. 여기서, $\beta_0 + \beta_1x_i$는 평균을 의미합니다. $\epsilon_i$ ~ iid N(0,$\sigma^2$)는 추론할 때 필요한 가정입니다. 최소제곱법에 의한 모수 추정에서는 특별히 오차항의 가정을 사용하지 않습니다. 최소제곱법은 $y_i - \beta_0 - \beta_1x_i$를 이용하기 때문에 $\epsilon_i$는 신경쓰지 않는다는 의미입니다. 모수 추정량 또는 예측값의 성질을 유도하기 위해 오차항의 가정이 필요합..

[통계학] 32. 두 모집단 비율 비교 - 비율 차, 구간 추정, 신뢰 구간, 중심축량

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 두 모집단 비율 비교 독립표본을 통해 두 범주로 이루어진 두 모집단의 비율을 비교하는 방법을 알아보겠습니다. 비율 차에 대한 중심축량과 이를 바탕으로 한 구간추정방법을 알아보겠습니다. 1. 모집단 가정과 점추정, 중심축량 구하기 각각의 모집단은 동일한 두 범주 (S, F)로 나누어져 있다고 가정하겠습니다. 여기서 S는 성공, F는 실패입니다. 또 각각의 표본은 정규분포를 따른다고 가정하겠습니다. 관심문제를 설정하겠습니다. 4번이 통계적 성질은 가장 좋지만, 형태가 어려우므로 이 강의에서는 1번 비율차에 대해서 다뤘습니다. 두 모집단에서 베르누이 시행으로 표본을 추출했다고 가정하겠습니다. 모집단을 가정 했으므로 비율차에 대한 점..

[통계학] 31. 두 모집단의 분산 비교 - 독립표본, 분산비, F분포, 신뢰구간, 가설검정

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 두 모집단 분산 비교 독립표본을 통해 두 정규 모집단의 분산을 비교하는 방법을 알아보겠습니다. 분산비에 대한 중심축량과 이를 바탕으로 한 분산비의 구간추정과 가설검정방법을 알아보겠습니다. 1. 정규 모집단으로 가정한 두 모집단 두 모집단의 표본은 독립이라고 가정하겠습니다. 평균이 다르고 분산이 같은 두 모집단과 평균이 다르고 분산도 다른 두 모집단의 모습입니다. 분산이 같은 경우에 하나의 기준으로 표본이 어느 모집단에 있을 확률이 높다고 판단할 수 있습니다. 하지만 분산이 다른 경우에는 두 개의 기준으로 표본이 어느 모집단에 있을 확률이 높은지 판단해야 합니다. 2. 점추정과 중심축량 분산이 다른 두 모집단의 관심문제는 다음과..

[통계학] 30. 대응 표본을 통해 모집단의 평균을 비교하는 방법

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 두 모집단 평균 비교 대응표본을 통해 모집단의 평균을 비교하는 방법을 알아보겠습니다. 대응표본에서의 평균 차에 대한 중심축량과 이를 바탕으로 한 구간추정과 가설검정방법을 알아보겠습니다. 1. 대응표본을 통해 모집단의 평균비교 예시 약의 유효성 평가는 어떻게 하면 좋을까? 두 운동화의 내구성 비교를 어떻게 하면 좋을까? 이 두 가지 경우와 같은 상황일 때 대응표본을 통한 모집단의 평균을 비교할 수 있습니다. 동일한 개체를 대상으로 처리 전후를 비교하거나 유사한 두 대상을 쌍으로 만들어 서로 다른 처리하고 처리효과에 차이가 있는지를 알아봅니다. 관측값의 기저 차이에 의해 발생하는 변동을 제거하고 순수한 처리효과를 유도할 수 있습니..

[통계학] 29. 두 모집단 평균 비교 - 독립표본, 분산이 다른 경우

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 두 모집단 평균 비교 - 독립표본, 분산이 다른 경우 독립표본을 통해 분산이 다른 두 정규 모집단의 평균 비교하는 방법을 알아보겠습니다. 평균 차에 대한 중심축량과 이를 바탕으로 한 구간추정과 가설검정방법을 알아보겠습니다. 1. 정규모집단으로 가정한 경우 통계값 도출 (1) 두 개의 모집단에서 얻은 표본은 독립표본입니다. (2) 점추정은 표본평균의 차를 이용합니다. (3) 표본평균 차의 통계적 성질은 다음과 같습니다. (4) 정규확률변수의 선형결합도 정규분포를 따릅니다. 독립이기 때문에 공분산을 고려할 필요가 없습니다. (5) 표준화하면 다음과 같습니다. 2. 중심축량 구하기 두 모집단의 분산이 같은 경우와 다른 경우의 차이점..

[통계학] 29. 두 모집단 평균 비교 - 독립표본, 분산이 같은 경우

여인권 교수님의 KMOOC 강의 를 수강하면서 공부한 내용을 정리해보았습니다. 두 모집단 평균 비교 - 독립표본, 분산이 같은 경우 독립표본을 통해 분산이 같은 두 정규 모집단의 평균 비교하는 방법을 알아보겠습니다. 평균 차에 대한 중심축량과 이를 바탕으로 한 구간추정과 가설검정방법을 알아보겠습니다. 1. 두 모집단 비교에서의 가정 (1) 두 모집단 모두 정규 분포 형태를 갖는다. (2) 정규 분포라고 보기 어렵다. a. 표본크기가 큰 경우 정규 분포로 가정(대표본) b. 표본크기가 크지 않고 이상점이 존재(비 모수적 방법 이용) 크게 두 가지 경우로 가정해볼 수 있습니다. 2. 정규 모집단으로 가정한 경우 신뢰구간 신뢰구간 구하는 방법을 알아보겠습니다. 정규 모집단으로 가정한 경우 다음과 같습니다. 또..

반응형