반응형

확률 20

[통계학] 07-4. 연속확률변수와 확률밀도함수

(통계학-기본개념과 원리, 여인권)을 바탕으로 제작하였습니다. (k-mooc 통계학의 이해1, 여인권)을 수강하면서 공부한 내용을 정리해보았습니다. 연속확률변수의 확률구조를 나타내는 확률밀도함수와 그 성질에 대해 알아보겠습니다. 1. 확률밀도함수 - pdf, probability density function 아래의 그림 처럼 연속확률변수 $X$의 분포형태, 즉 모집단의 형태를 나타낸 것으로 임의의 점 $x$에서의 밀도를 $f(x)$라고 표시하면 $f(x)$를 확률밀도함수라고 합니다. 히스토그램은 자료들을 적절한 구간으로 나누고 각 구간에 포함되어 있는 자료의 상대도수를 면적으로 표시한 것으로 전체 면적은 1이 됩니다. 이때 해당 구간의 높이를 밀도하고 했습니다. 이 밀도는 해당 구간에 상대적으로 얼마나..

[통계학] 07-3. 이산확률변수와 확률질량함수 (확률질량함수의 성질, 확률함수의 변환, 누적분포함수)

(통계학-기본개념과 원리, 여인권)을 바탕으로 제작하였습니다. (k-mooc 통계학의 이해1, 여인권)을 수강하면서 공부한 내용을 정리해보았습니다. 이산확률변수의 확률구조를 나타내는 확률질량함수의 성질에 대해 알아보겠습니다. 1. 확률질량함수 - probability mass function 이산확률변수는 확률변수의 치역이 셀 수 있는 경우를 의미합니다. 이산확률변수 $X$가 임의의 값 $x$일 확률 $P(X = x)$를 $x$에 대한 함수로 생각하면 다음과 같이 됩니다. 이때 $f(x)$를 확률변수 $X$의 확률질량함수라고 합니다. 예시문제 동전을 세 번 던졌을 때 앞면의 수를 $X$라고 하면 $X$가 가질 수 있는 값은 $x$ = 0, 1, 2, 3이고 이에 대한 확률질량 함수는 다음과 같습니다. 앞..

[통계학] 07-2. 확률분포, 확률분포표

(통계학-기본개념과 원리, 여인권)을 바탕으로 제작하였습니다. (k-mooc 통계학의 이해1, 여인권)을 수강하면서 공부한 내용을 정리해보았습니다. 확률변수의 값에 대해 확률을 표시한 확률분포에 대해서 알아보도록 하겠습니다. 1. 확률분포 - probability distibution 확률분포는 확률변수의 값에 대해 확률을 표시한 것입니다. 확률분포는 우리가 관심을 가지는 모집단의 확률구조를 나타냅니다. 확률분포를 설명하기 위해 확률변수의 정리를 복습해보도록 하겠습니다. 확률변수는 표본공간의 값을 숫자로 바꾼 함수이기 때문에 어떤 확률변수 $X$가 임의의 $x$값을 가진다는 것은 표본공간 내에 대응하는 원소들이 존재합니다. 즉, $X = x$이면 표본공간에서 {$w\mid X(w) = x, w\in$Ω}..

[통계학] 06-3. 조건부확률 (3) - 베이즈 정리

(통계학-기본개념과 원리, 여인권)을 바탕으로 제작하였습니다. (k-mooc 통계학의 이해1, 여인권)을 수강하면서 공부한 내용을 정리해보았습니다. 조건부 확률의 주요 이론인 베이즈 정리에 대해 알아보고 베이즈 정리와 관련된 다양한 응용문제를 다루어보겠습니다. 1. 베이즈 정리 - Bayes' theorem 베이즈 정리는 조건부확률을 이용하여 계산하는 이론입니다. 식은 다음과 같습니다. 조건부 확률의 두 가지 응용식을 이용했습니다. 이제 베이즈 정리에 대해 알아보도록 하겠습니다. 베이즈 정리는 원인과 결과 형태의 문제에서 결과에 대한 원인 분석을 가능하게 합니다! 조건부확률 $P(B \mid A)$는 순서적으로 볼 때, 대부분 사건 $A$가 먼저 발생하고 $B$가 이어 발생하는 상황으로 $A$는 원인, ..

[통계학] 06-2. 조건부 확률 (2) - 독립사건

(통계학-기본개념과 원리, 여인권)을 바탕으로 제작하였습니다. (k-mooc 통계학의 이해1, 여인권)을 수강하면서 공부한 내용을 정리해보았습니다. 조건부확률의 특별한 형태인 독립사건의 정의와 관련 문제에 대해서 알아보겠습니다. 1. 독립사건 - independent events 이전에 공부했던 조건부확률을 이용하면 교사건을 연속적인 조건부확률의 곱으로 계산할 수 있음을 보았습니다. 어떤 특별한 조건에서는 위의 교사건이 개별 사건의 곱으로 표시되는 경우가 있습니다. 만약 사건 $A$가 사건 $B$의 발생에 영향을 주지 않는다면 $P(B \mid A) = P(B)$로 쓸 수 있습니다. 또한 사건 $B$가 사건 $A$에 영향을 주지 않는 다면 $P(A \mid B) = P(A)$로 쓸 수 있습니다. 이와 같..

[통계학] 06-1. 조건부 확률 (1) - 조건부 확률의 정의와 응용사례

(통계학-기본개념과 원리, 여인권)을 바탕으로 제작하였습니다. (k-mooc 통계학의 이해1, 여인권)을 수강하면서 공부한 내용을 정리해보았습니다. 조건부 확률의 정의와 조건부 확률에서 파생되는 주요 정리 및 응용사례에 대해 알아보겠습니다. 조건부 확률 문제 동전 두 개를 던지는 실험에서 어떤 한 동전이 앞면이라는 것을 알았을 때, 두 동전 모두 앞면일 사건의 확률을 구해 보겠습니다. 두 동전을 던지는 실험에서의 표본공간은 다음과 같습니다. 여기서 어떤 한 동전이 앞면이라는 정보가 추가로 주어지면 표본공간에서 {$TT$}가 발생할 수 없기 때문에 표본공간은 {$HH, TH, HT$} 으로 축소됩니다. 이 표본공간상에서 두 동전 모두 앞면일 사건의 확률은 1/3가 됩니다. 위의 문제에서와 같이 확률실험에서..

[통계학] 04-4. 확률(4) - 통계적 확률 (상대도수의 극한개념, 통계적확률, 몬테카를로 적분)

(통계학-기본개념과 원리, 여인권)을 바탕으로 제작하였습니다. (k-mooc 통계학의 이해1, 여인권)을 수강하면서 공부한 내용을 정리해보았습니다. 상대도수의 극한의 개념으로 이해하는 확률에 대해 알아보겠습니다. 이를 통해 확률이 모집단에 대한 것임을 이해해보겠습니다. 2.2 상대도수의 극한개념 (1) 통계적 확률(statistical probability) 통계적 확률이란 각각의 실험에서 발생하는 결과는 표본이고 실험을 무한히 반복한다는 것은 표본이 결국 모집단이 된다는 의미입니다. 결국, 확률은 모집단이 어떤 형태로 구성되어 있는지를 보여주게 됩니다. 동전의 앞면이 나올 사건을 A라고 하면 P(A) = 1/2입니다. 이는 앞면과 뒷면의 발생가능성이 동일하다고 가정하는 고전적 확률입니다. 동전 던지기 ..

[통계학] 04-3. 확률(3) - 경우의 수 (조합, 중복조합, 순열, 중복순열)

(통계학-기본개념과 원리, 여인권)을 바탕으로 제작하였습니다. (k-mooc 통계학의 이해1, 여인권)을 수강하면서 공부한 내용을 정리해보았습니다. 표본공간 및 사건의 원소 개수를 효율적으로 계산하는 기본 공식(경우의 수)을 소개하겠습니다. 경우의 수 - the number of cases 확률을 계산하기 위해 표본공간과 사건에 있는 원소의 개수를 효율적으로 계산하는 것이 중요합니다. 어떤 실험을 했을 때 발생할 수 있는 결과의 개수, 즉 원소의 개수를 경우의 수(the number of cases)라고 합니다. 경우의 수를 계산하는 데 있어 기본 법칙은 곱의 법칙(multiplication)입니다. 곱의 법칙에 의하면 어떤 실험이 m개의 연속된 단계로 이루어져 있고 $i$-번째 단계에서 발생 가능한 결..

[통계학] 04-2. 확률(2) - 확률의 이해 (고전적 확률, 연속표본공간)

(통계학-기본개념과 원리, 여인권)을 바탕으로 제작하였습니다. (k-mooc 통계학의 이해1, 여인권)을 수강하면서 공부한 내용을 정리해보았습니다. 2. 확률의 이해 2.1 고전적 확률 고전적 확률(등확률)은 표본공간의 각 원소(근원사건)의 발생가능성이 동일(equally likely)한 확률을 의미합니다. 여기서 n은 표본공간의 원소개수, k는 사건 A의 원소개수를 의미합니다. 예를 들어, 정사면체 주사위 한 개를 던질 때 표본공간은 {1, 2, 3, 4, 5, 6}이 되며 원소 개수는 6이 됩니다. 각각의 사건이 발생할 확률은 1/6로 동일합니다. 연속표본공간(continous sample space) 구매한 스마트폰의 수명 측정한다고 가정했을 때 스마트폰의 수명(x)은 $0 \leq x$가 됩니다...

[통계학] 04-1. 확률 (1) - 기본개념 (확률, 확률실험, 표본공간, 사건, 집합의 연산법칙, 벤다이어그램)

(통계학-기본개념과 원리, 여인권)을 바탕으로 제작하였습니다. (k-mooc 통계학의 이해1, 여인권)을 수강하면서 공부한 내용을 정리해보았습니다. 이번 포스팅에서는 확률을 정의하기 위한 전제조건을 알아보겠습니다. 또한 확률, 확률실험, 표본공간, 사건, 집합의 연산법칙, 벤다이어그램에 대해서 공부하겠습니다. 1. 확률 확률은 모집단1에서 표본을 뽑을 때 꼭 필요한 개념입니다. 어떠한 표본을 뽑는지에 따라 기술통계의 통계값(평균, 분산)이 달라지기 때문입니다. 이제 모집단1에서 표본을 생성하는 확률에 대해서 알아보겠습니다. 1.1 확률이란? 확률(probability)은 어떠한 사건이 발생할 가능성이 얼마나 되는지를 나타내는 [0, 1]의 수치적 측도입니다. 확률을 언급하기 위해서는 해당하는 확률실험(r..

반응형